• Title/Summary/Keyword: Lithium ion Battery

Search Result 933, Processing Time 0.021 seconds

A Three-Port Bidirectional Modular Circuit for Li-Ion Battery Strings Charge/Discharge Equalization Applications (리튬-이온 배터리 충방전 균등화를 위한 3-단자 양방향 모듈 회로)

  • Lee, Kui-Jun;Park, Nam-Ju;Wang, Xiongfei;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.37-39
    • /
    • 2008
  • In this paper, a three-port bidirectional modular circuit applied in charging and discharging equalization for lithium-ion battery strings is proposed. This circuit consists of four MOSFETs and one transformer which provide a simple structure to be easily modularized. Compared to conventional individual cell equalization schemes, it utilizes the transformer as the energy transfer element, allowing direct transfer of energy between arbitrary two cells of three-cell battery module, thus improving the equalization efficiency significantly by using much less number of equalizers for long battery strings. Simulation results are presented to validate the circuit operation and confirm its capability to equalize the three-cell battery module.

  • PDF

Transmission Electron Microscope Specimen Preparation of Si-Based Anode Materials for Li-Ion Battery by Using Focused Ion Beam and Ultramicrotome

  • Chae, Jeong Eun;Yang, Jun Mo;Kim, Sung Soo;Park, Ju Cheol
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.49-53
    • /
    • 2018
  • A successful transmission electron microscope (TEM) analysis is closely related to the preparation of the TEM specimen and should be followed by the suitable TEM specimen preparation depending on the purpose of analysis and the subject materials. In the case of the Si-based anode material, lithium atoms of formed Li silicide were removed due to ion beam and electron beam during TEM specimen preparation and TEM observation. To overcome the problem, we proposed a new technique to make a TEM specimen without the ion beam damage. In this study, two types of test specimens from the Si-based anode material of Li-ion battery were prepared by respectively adopting the only focused ion beam (FIB) method and the new FIB-ultramicrotome method. TEM analyses of two samples were conducted to compare the Ga ion damage of the test specimen.

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries

  • Yu, Seungho;Kim, Soo;Kim, Tae Young;Nam, Jin Hyun;Cho, Won Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.79-88
    • /
    • 2013
  • $LiFePO_4$ is a promising active material (AM) suitable for use in high performance lithium-ion batteries used in automotive applications that require high current capabilities and a high degree of safety and reliability. In this study, an optimization of the electrode design parameters was performed to produce high capacity lithium-ion batteries based on $LiFePO_4$/graphite electrodes. The electrode thickness and porosity (AM density) are the two most important design parameters influencing the cell capacity. We quantified the effects of cathode thickness and porosity ($LiFePO_4$ electrode) on cell performance using a detailed one-dimensional electrochemical model. In addition, the effects of those parameters were experimentally studied through various coin cell tests. Based on the numerical and experimental results, the optimal ranges for the electrode thickness and porosity were determined to maximize the cell capacity of the $LiFePO_4$/graphite lithium-ion batteries.

Research on recycling technology for spent cathode materials of lithium-ion batteries using solid-state synthesis (고상법을 활용한 리튬이차전지 폐양극활물질 재활용 기술 연구)

  • Donghun Kang;Joowon Im;Minseong Ko
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • As the demand for lithium-ion batteries, a key power source in electric vehicles and energy storage systems, continues to increase for achieving global carbon neutrality, there is a growing concern about the environmental impact of disposing of spent batteries. Extensive research is underway to develop efficient recycling methods. While hydrometallurgy and pyrometallurgy methods are commonly used to recover valuable metals from spent cathode materials, they have drawbacks including hazardous waste and complex processes. Hence, alternative recycling methods that are environmentally friendly are being explored. However, recycling spent cathode materials still remains complex and energy-intensive. This study focuses on a novel approach called solid-state synthesis, which aims at regenerating the performance of spent cathode materials. The method offers a simpler process and reduces energy consumption. Optimal heat treatment conditions were identified based on experimental results, contributing to the development of sustainable recycling technologies for lithium-ion batteries.