• Title/Summary/Keyword: Lithium battery anode

Search Result 347, Processing Time 0.024 seconds

Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte (이온성 액체 복합 Poly(ethylene oxide)(PEO) 고체 고분자 전해질의 전기화학적 특성)

  • Park, Ji-Hyun;Kim, Jae-Kwang
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.101-106
    • /
    • 2016
  • In this study, we prepared an ionic liquid composite solid polymer electrolyte (PEO-LiTFSI-$Pyr_{14}TFSI$) with poly(ethylen oxide), lithium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide by blending-cross linking process. Although the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte displayed a small peak at 4.4 V, it had high electrochemical oxidation stability up to 5.7 V. Ionic conductivity of the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte increased with increasing temperature from $10^{-6}S\;cm^{-1}$ at $30^{\circ}C$ to $10^{-4}S\;cm^{-1}$ at $70^{\circ}C$. To investigate the electrochemical properties, the PEO-LiTFSI-$Pyr_{14}TFSI$ composite solid polymer electrolyte assembled with $LiFePO_4$ cathode and Li-metal anode. At 0.1 C-rate, the cell delivered $40mAh\;g^{-1}$ for $30^{\circ}C$, $69.8mAh\;g^{-1}$ for $40^{\circ}C$ and $113mAh\;g^{-1}$ for $50^{\circ}C$, respectively. The PEO-LiTFSI-$Pyr_{14}TFSI$ solid polymer electrolyte exhibited good charge-discharge performance in Li/SPE/$LiFePO_4$ cells at $50^{\circ}C$.

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

The study on the variaty of anode materials, $C_6Li$ for secondary battery (2차 전지 음극 재료용 $C_6Li$의 다양화에 관한 연구)

  • 오원춘;김범수;이영훈;고영신
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.660-666
    • /
    • 1998
  • We discussed structure, energy state, characteristics of thermal stability, and electrochemical properties of Li-GFICs, Li-PCICs, and Li-AGICs during the intercalation process. According to X-ray diffraction patterns, we observed phase of stage 2 mainly from Li-GFICs, while stage 1 phase as well as stage 2 from Li-PCICs. For the structure of Li-AGICs, stage 1 phase was dominant, but it was not possible to obtain pure stage 1 compound probably due to structural characteristics of artificial graphite. We measured energy state of the compounds to stage stability, and revealed that Li-AGICs and Li-GFICs were in more stable state than Li-PCICs. Therefore, those two compounds could be excellent candidate for energy reserve material. From the study of thermal degradation, Li-GFICs showed strong exothermic reaction at around 300 and $400^{\circ}C$. In the study of thermal stability of Li-AGIC at various temperatures, we observed that lithium was not completely deintercalated and high stage was maintained even at high temperature. In the case of charge, discharge, and electrochemical studies, Li-GFICs showed the best results.

  • PDF

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Choi, Ji-Seub;Lee, Hoi-Jin;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.308-314
    • /
    • 2017
  • $Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu (Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지)

  • Shin, Min-Seon;Kim, Tae-Yeon;Lee, Sung-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

Performances of Li-Ion Batteries Using LiNi1-x-yCoxMnyO2 as Cathode Active Materials in Frequency Regulation Application for Power Systems

  • Choi, Jin Hyeok;Kwon, Soon-Jong;Lim, Jungho;Lim, Ji-Hun;Lee, Sung-Eun;Park, Kwangyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.461-466
    • /
    • 2020
  • There are many application fields of electrical energy storage such as load shifting, integration with renewables, frequency or voltage supports, and so on. Especially, the frequency regulation is needed to stabilize the electric power system, and there have to be more than 1 GW as power reserve in Korea. Ni-rich layered oxide cathode materials have been investigated as a cathode material for Li-ion batteries because of their higher discharge capacity and lower cost than lithium cobalt oxide. Nonetheless, most of them have been investigated using small coin cells, and therefore, there is a limit to understand the deterioration mode of Ni-rich layered oxides in commercial high energy Li-ion batteries. In this paper, the pouch-type 20 Ah-scale Li-ion full cells are fabricated using Ni-rich layered oxides as a cathode and graphite as an anode. Above all, two test conditions for the application of frequency regulation were established in order to examine the performances of cells. Then, the electrochemical performances of two types of Ni-rich layered oxides are compared, and the long-term performance and degradation mode of the cell using cathode material with high nickel contents among them were investigated in the frequency regulation conditions.

A Study on the chemical analysis of synthesized Li-AGICs with changes of intercalant contents (Intercalant 함량 변화에 따라 합성된 Li-AGICs의 화학적 분석에 관한 연구)

  • Oh, Won-Chun;Shim, Sang-Kyun
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.209-215
    • /
    • 1997
  • Li-AGICs as a anode of secondary battery were synthesized by high-pressure method as a function of the Li-contents. The characteristics of these prepared compounds were determined from the studies with X-ray diffraction method, UV/VIS spectrophotometric and differential scanning calorimeter(DSC) analysis. From the results of X-ray diffraction, it was found that the lower stage intercalation compounds were formed with increase of Li-contents. The mixed stages in these compounds were also observed. In the case of the $Li_{30wt%}$-AGIC, the compounds in the stage 1 structure were formed predominantly, but the structure of only pure stage 1 for structural defect of artificial graphite is not observed. According to UV/VIS spectrophotometric analysis, $Li_{30wt%}$-AGIC shows distinguishable energy state spectrum with the position of $R(%)_{min}$ values, but the characteristic spectra of almost all Li-AGICs are not observed. The enthalpy and entropy changes of the compounds can be obtained from the differential scanning calorimetric analysis results. From the results, it was found that exothermic and endothermic reactions of Li-AGICs are related to thermal stability of lithium between artificial graphite layers.

  • PDF

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.

Synthesis and Characterization of Li-Graphite intercalation Compounds (리튬-흑연 층간 화합물의 합성 및 특성)

  • Oh, Won-Chun;Kim, Myung-Kun;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 1994
  • Li-GICs as a high performance energy storager were synthesized as a function of the Li content by the admixture and add-pressure method. The characteristics of these prepared compounds have been determined from the studies by X-ray diffraction, UV-VIS spectrometry and CHN analysis. It follows from the results of X-ray diffraction that the lower-stage intercalation compounds are formed as the Li contents increase, however the mixed stages in these compounds are also observed. In the case of the $Li_{40wt%}$, the compound with the structure of stage 1 has been predominently, but the structure of only stage 1 is not obtained. The $d_{001}$ value of stage 1 was determined to be ca. $3.70{\AA}$. An analysis of spectrometric data shows that each of the compounds gives distingushible energy state spectra. It is seen from the spectra that the positions of $R_{min}$ values, with increase in the Li contents, are shifted in the region of higher energy state. Such a result can be attributed to the formation of stable stages. The results of CHN analysis allow us to find the mixing state related to chemical compositions of the intercalated compounds and the superiority to admixture and add-pressure method. From the results determined, it reveals that $Li_{10wt%}$-GIC and $Li_{20wt%}$-GIC can be utilized for an anode of rechargable battery.

  • PDF

The relation of structural transition and electrical property by deintercalation of Li-Carbon intercalation compounds (I) : For the formation of Li-GFDICs and Li-PCDICs (리튬-탄소층간화합물의 Deintercalation에 따른 구조변이와 전기적 성질과의 관계(I) : Li-GFDICs와 Li-PCDICs의 생성에 대하여)

  • Oh, Won-Chun;Baek, Dae-Jin;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-138
    • /
    • 1995
  • We have discussed on the structural transition and its effect on the electrical property of Li-GFDICs and Li-PCDICs occuring during the deintercalation process of Li-Graphite Fiber Intercalation Compounds(Li-GFICs) and Li-Petroleum Cokes Intercalation Compounds(Li-PCDICs) synthesized under pressure and temperature by spontaneous oxidation by air circulation. The analytical results were obtained by X-ray diffraction and electrical specific resistivity measurements. According to X-ray analysis, we have found that the major stage of Li-GFICs was stage 2 and those of Li-PCICs were stage 1 and stage 2, respectively. And from this results of the deintercalation process, we have found that the deintercalation process did not occur any more after 5th week of Li-GFDICs and after 3rd week of Li-PCDICs. According to the results of the electrical specific resistivity measurements, Li-GFDICs showed little variation to 3rd week and rising in the steady curve after 4th week, while Li-PCDICs showed a rising in the steady curve to 3rd week and a declining curve after 3rd week. Therefore from these results, we can consider that graphite fiber and petroleum cokes as a substrate can be also used as an anode material of battery because they have good intercalation-deintercalation reactivity with lithium.

  • PDF