• 제목/요약/키워드: Lithium Titanate

검색결과 22건 처리시간 0.038초

Synthesis of Lithium Titanate Whisker Using Ion-Exchange of Acid Treatment

  • Um Myeong-Heon;Lee Jin-Sik
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.627-633
    • /
    • 2004
  • Lithium titanate whiske($Li_{x}Ti_{4}O_9$) was prepared by an ion-exchange reaction. To this end, the initial material, potassium tetratitanate ($K_{2}Ti_{4}O_9{\cdot}nH_{2}O$) was prepared by calcination of a mixture of $K_{2}CO_3\;and\;TiO_2$ with a molar ratio of 2.8 at $1050^{\circ}C$ for 3 h, followed by boiling water treatment of the calcined products for 10 h. Fibrous potassium tetratitanate could be transformed into layered hydrous titanium dioxide ($H_{2}Ti_{4}O_9{\cdot}nH_{2}O$) through an exchange of $K^{+}\;with\;H^{+}$ using 0.075 M HCl. Also, lithium titanate whisker was finally prepared as $Li^{+}\;and\;H^{+}$ ions were exchanged by adding 20 mL of a mixture solution of LiOH and $LiNO_3$ to 1g whisker and stirring for $5\~15$ days. The average length and diameter of the $Li_{x}Ti_{4}O_9$ whiskers were $10\~20{\mu}m\;and\;1\~3{\mu}m$, respectively.

리튬이온의 선택적 투과를 위한 Lithium Lanthanum Titanate계 분리막 제조 공정 개발 (Development of Lithium Lanthanum Titanate (LLTO) Membrane Manufacturing Process for Selective Separation of Lithium Ion)

  • 김영일;박상철;신광호;김인영;이기안;정성균;이빈
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.22-28
    • /
    • 2023
  • The global demand for raw lithium materials is rapidly increasing, accompanied by the demand for lithiumion batteries for next-generation mobility. The batch-type method, which selectively separates and concentrates lithium from seawater rich in reserves, could be an alternative to mining, which is limited owing to low extraction rates. Therefore, research on selectively separating and concentrating lithium using an electrodialysis technique, which is reported to have a recovery rate 100 times faster than the conventional methods, is actively being conducted. In this study, a lithium ion selective membrane is prepared using lithium lanthanum titanate, an oxide-based solid electrolyte material, to extract lithium from seawater, and a large-area membrane manufacturing process is conducted to extract a large amount of lithium per unit time. Through the developed manufacturing process, a large-area membrane with a diameter of approximately 20 mm and relative density of 96% or more is manufactured. The lithium extraction behavior from seawater is predicted by measuring the ionic conductivity of the membrane through electrochemical analysis.

분말 합성법(Sol-Gel & Solid-State reaction)에 따른 Lithium Lanthanum Titanate 분말의 입자 및 결정 크기 비교 분석에 관한 연구 (A Study on Particle and Crystal Size Analysis of Lithium Lanthanum Titanate Powder Depending on Synthesis Methods (Sol-Gel & Solid-State reaction))

  • 윤정재;이승환;백소현;권용범;송요셉;김범성;이빈;곽노균;정다운
    • 한국분말재료학회지
    • /
    • 제30권4호
    • /
    • pp.324-331
    • /
    • 2023
  • Lithium (Li) is a key resource driving the rapid growth of the electric vehicle industry globally, with demand and prices continually on the rise. To address the limited reserves of major lithium sources such as rock and brine, research is underway on seawater Li extraction using electrodialysis and Li-ion selective membranes. Lithium lanthanum titanate (LLTO), an oxide solid electrolyte for all-solid-state batteries, is a promising Li-ion selective membrane. An important factor in enhancing its performance is employing the powder synthesis process. In this study, the LLTO powder is prepared using two synthesis methods: sol-gel reaction (SGR) and solid-state reaction (SSR). Additionally, the powder size and uniformity are compared, which are indices related to membrane performance. X-ray diffraction and scanning electron microscopy are employed for determining characterization, with crystallite size analysis through the full width at half maximum parameter for the powders prepared using the two synthetic methods. The findings reveal that the powder SGR-synthesized powder exhibits smaller and more uniform characteristics (0.68 times smaller crystal size) than its SSR counterpart. This discovery lays the groundwork for optimizing the powder manufacturing process of LLTO membranes, making them more suitable for various applications, including manufacturing high-performance membranes or mass production of membranes.

최근 휴대폰용 배터리의 기술개발 동향 (Recent Trend of Lithium Secondary Batteries for Cellular Phones)

  • 이형근;김영준;조원일
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 이 리뷰를 통하여, 휴대폰용 리튬이차전지의 최근 기술동향을 설명하였다. 휴대폰용 이차전지로는 니카드, 니켈-금속수소, 리튬이온 혹은 리튬이온폴리머의 세 가지 형태의 전지가 있으며, 리튬 이차전지가 에너지밀도 측면에서 가장 성능이 우수하다. 즉, 동일한 용량을 갖는 이차전지 가운데 가장 작고 가벼운 것은 리튬이차전지이다. 이러한 리튬이차전지의 시장은 매년 약 15%의 높은 성장을 기록하고 있다. 연구개발은 $LiFePO_4$를 포함하는 새로운 양극, $Li_4Ti_5O_{10}$, Si, 주석 등의 새로운 음극소재, 새로운 전해질과 안정성 확보에 관한 것을 중심으로 진행되고 있다.

Novel Synthesis Method and Electrochemical Characteristics of Lithium Titanium Oxide as Anode Material for Lithium Secondary Battery

  • Kim Han-Joo;Park Soo-Gil
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.119-123
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. Li$_{4}$Ti$_{5}$O$_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here Li$_{4}$Ti$_{5}$O$_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed Li$_{4}$ Ti$_{5}$O$_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of Li$_{4}$ Ti$_{5}$O$_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\~$ 3.0 V. Furthermore, the crystalline structure of Li$_{4}$ Ti$_{5}$O$_{12}$ didn't transform during the lithium intercalation and deintercalation process.

전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성 (Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery)

  • 안준구;윤순길
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.

Chemical Stability of Lithium Lanthanum Titanate (Li0.5La0.5TiO3) as a Solid Electrolyte for Lithium Secondary Batteries

  • 은영진;임완규;이원준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.202.1-202.1
    • /
    • 2014
  • 최근 대용량 에너지 저장장치로 사용하고자 하는 리튬-공기전지는 리튬 음극과 액체 전해질 사이의 화학적 불안정성이 문제가 되고 있다. 또한 리튬이온전지는 액체전해질의 사용으로 인해 폭발 등의 안정성 문제가 대두되고 있는 실정이다. 때문에 리튬-공기전지에서 리튬 음극을 액체 전해질로부터 보호할 수 있으며, 리튬이온전지의 액체전해질과 대체하였을 때 전극과도 안정한 고체전해질의 연구가 필요하다. 고체전해질은 구조적으로 crystalline, glassy, 폴리머로 나눌 수 있는데, 이 중 crystalline 구조의 고체전해질은 glassy 및 폴리머 고체전해질에 비해 상온에서 비교적 이온전도도가 높다고 알려져 있다 [1]. 그러나 이온전도도가 높은 황화물 및 질화물 고체전해질은 수분에 민감한 반면 [2,3], 산화물 계열의 물질은 안정할 것으로 예상된다. 본 연구에서는 이온전도도가 높은 산화물인 lithium lanthanum titanate ($Li_{0.5}La_{0.5}TiO_3$, LLTO)를 고체전해질로 선정하여 다양한 환경에서 화학적 안정성에 관해 연구하였다. LLTO와 각종 용액과의 화학적 안정성을 살펴보기 위해 고체전해질을 DI water, 1 M $LiPF_6$ Ethylene Carbonate (EC)-Dimethyl Carbonate (DMC) (50:50 vol.%), 0.57 M LiOH (pH=13), 0.1 M HCl (pH=1)에 immersion하고 무게, 표면형상, 상(phase), 이온전도도 등의 변화를 관찰하였다. 또한 LLTO와 전극간의 반응성을 알아보기 위해 LLTO 분말과 음극물질인 $Li_4Ti_5O_{12}$ 및 양극물질인 $LiCoO_2$ 분말을 혼합한 후 $300^{\circ}C{\sim}700^{\circ}C$의 온도범위에서 열처리하여 반응을 가속화 한 후 상변화 현상을 살펴보았다.

  • PDF

Effect of Pre-Cycling Rate on the Passivating Ability of Surface Films on Li4Ti5O12 Electrodes

  • Jung, Jiwon;Hah, Hoe Jin;Lee, Tae jin;Lee, Jae Gil;Lee, Jeong Beom;Kim, Jongjung;Soon, Jiyong;Ryu, Ji Heon;Kim, Jae Jeong;Oh, Seung M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권1호
    • /
    • pp.15-24
    • /
    • 2017
  • A comparative study was performed on the passivating abilities of surface films generated on lithium titanate (LTO; $Li_4Ti_5O_{12}$) electrodes during pre-cycling at two different rates. The surface film deposited at a faster pre-cycling rate (i.e., 0.5 C) is irregularly shaped and unevenly covers the LTO electrode. Owing to the incomplete coverage of the protective film, this LTO electrode exhibits poor passivating ability. Additional electrolyte decomposition and concomitant film deposition occur during subsequent charge/discharge cycles. As a result of the thick surface film, severe cell polarization occurs and eventually causes cell failure. However, pre-cycling the Li/LTO cell at a slower rate (0.1 C) improves cell polarization and capacity retention; this occurs because the surface film uniformly covers the LTO electrode and provides strong passivation. Accordingly, there is no significant film deposition during subsequent charge/discharge cycling. Additionally, self-discharge is reduced during high-temperature storage.

초음파-광음향 융합 영상을 위한 투명 초음파 변환기 (Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review)

  • 박성훈;장진호
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.441-451
    • /
    • 2023
  • 초음파 변환기는 광음향 및 초음파 영상 조합과 영상 평가에 있어 필수 구성 요소이다. 그러나 기존의 초음파 변환기는 불투명하여 광음향 영상을 획득하기 위해서는 광이 초음파 변환기를 우회 해야한다. 동축 정렬이 없다면 광 도달 영역이 제한되고 이를 해결하기 위해 복잡한 구성으로 시스템의 부피가 커지는 문제가 있다. 이러한 문제점을 극복하기 위해 광학적으로 투명한 초음파 변환기를 개발하기 위해 다양한 접근 방법이 연구되었다. 기존의 불투명한 초음파 변환기와 다르게 광학적으로 투명한 초음파 변환기는 특정 압전소자와 용도에 맞는 다양한 제작 방법이 존재한다. 본 연구에서 압전소자 기반의 투명 초음파 변환기에 사용되는 재료로 Lithium Niobate(LNO), Lead Magnesium Niobate-Lead Titanate(PMN-PT), Polyvinylidene Difluoride(PVDF)를 사용한 결과를 비교하였다. LNO는 투명 초음파 변환기에서 많이 사용되는 압전소자이고, PMN-PT는 LNO보다 높은 송수신율로 최근 활발히 연구되고 있다. 기존 투명 변환기는 광음향 해상도보다 초음파 해상도가 낮지만, 최근 PVDF를 사용하여 높은 초음파 해상도의 투명 집속초음파 변환기를 제작하고 있다. 이러한 투명 초음파 변환기 제작 결과에 대한 비교 분석을 수행하였다.