• Title/Summary/Keyword: Lithium Secondary Battery

Search Result 358, Processing Time 0.03 seconds

Trend on the Recycling Technologies for the used Lithium Battery by the Patent Analysis (특허(特許)로 본 폐리튬전지 재활용(再活用) 기술(技術) 동향(動向))

  • Sohn, Jeong-Soo;Shin, Shun-Myung;Kang, Kyung-Seok;Choi, Mi-Jeong
    • Resources Recycling
    • /
    • v.16 no.3 s.77
    • /
    • pp.50-60
    • /
    • 2007
  • There are several kinds of battery such as zinc-air battery, lithium battery, Manganese dry battery, silver oxide battery, mercury battery, sodium-sulphur battery, lead battery, nickel-hydrogen secondary battery, nickel-cadmium battery, lithium ion battery, alkaline battery, etc. These days it has been widely studied for the recycling technologies of the used battery from view points of economy and efficiency. In this paper, patents on the recycling technologies of the used lithium battery were analyzed. The range of search was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1986 to 2006. Patents were collected using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

The Electrical Characteristic of Composite Film for Lithium Secondary Battery by adding DMSO (DMSO 첨가에 따른 리튬이차전지용 복합필름의 전기적 특성)

  • 박수길;김종진;이창진;김상욱;김현후;임기조;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.269-272
    • /
    • 1997
  • The Lithium ion secondary battery has been developed for high energy density of portable electrical device and electronics. Among the many conductive polymer materials, the positive active film for Li polymer battery system was synthesized successfully from polyphenylene diamine(PPD) by chemical polymerization in our lab. And PPD-DMcT(2, 5-dimercapto-1, 3, 4-thi-adiazole) composite flim conductive material, at high temperature was also prerared with the addition of dimethylsulfoxide(DMSO). The surface morphology and thermal stability of prepared composite flim was carried out by using SEM and TGA, respectively. Electrochemical and electrical conductivity of composite flim were also discussed by cyclic voltammetry and four-probe method in dry box(<27pm). And the electrode reaction mechanism was detected and analyzed from the half cell unit battery system.

  • PDF

Electrochemical Behavior of Si/Cu/Graphite Composite Anode for Lithium Secondary Battery (리튬이차전지용 Si/Cu/Graphite 복합체 음극의 전기화학적 거동)

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.162-166
    • /
    • 2009
  • The carbon-coated Si/Cu powders were synthesized by mechanical ball-milling and hydrocarbon gas decomposition methods at high temperature. The carbon-coated Si/Cu powder was used as anode for lithium secondary battery and its electrochemical behavior was investigated. In addition, the carbon-coated Si/Cu/graphite composite anode material was prepared using natural graphite powder and their electrochemical characteristics were compared with natural graphite anode. The specific capacity of carbon-coated Si/Cu anode increased to the initial 10 cycles. The carbon-coated Si/Cu/graphite composite anode exhibited the reversible specific capacity of 450mAh/g and the first cycle efficiency of 81.3% at $0.25mA/cm^2$. The cycling performance of the composite anode was similar to that of pure graphite anode except the reversible specific capacity value.

Performance of the Negative Carbon Electrode Prepared with Graphitic Carbon and Nongraphitic Carbon Material in Lithium Ion Secondary Battery (흑연계 및 비흑연계 탄소로 조합된 리튬이온 이차전지의 탄소부극 특성)

  • Kim, Hyun-Joong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1065-1069
    • /
    • 1998
  • This study was investigated to improve peformance of carbon negative electrode for lithium ion secondary battery. The carbon electrode was prepared by mixing with graphitic carbon material, natural graphite, and nongraphitic carbon material, petroleum cokes, which was heat-treated at $700^{\circ}C$ for l hour. Its electrochemical and charge-discharge characteristics were tested according to mixing ratio of different two types of carbon material. The carbon electrode prepared with various mixing ratio showed both charateristcs of two different types of carbon materials and the best characteristics as carbon electrode was demonstrated at mixing ratio of 1:1.

  • PDF

Performance of Graphite Electrode Modified with Acid Treatment for Lithium Ion Secondary Battery (산처리에 의해 개질된 리튬이온 이차전지용 흑연 전극의 특성)

  • Kim, Myung-Soo;Moon, Seung-Hwan;Kim, Mun-Geol;Kim, Taek-Rae;Hahm, Hyun-Sik;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.142-150
    • /
    • 2005
  • The natural graphite particles A and heat-treated graphite particles B at $1800\;^{\circ}C$ after pitch-coating were used as the anode base materials for lithium ion secondary battery. In order to improve the performance of anode materials, the base anode materials were treated with various acids. With the acid treatments of 62% $HNO_3$ and 95% $H_2SO_4$ aqueous solution, the specific surface area and electrical conductivity of base anode materials were increased, and the initial charge-discharge capacity and cycle performance were improved due to the elimination of structural defects.

Performance of modified graphite as anode material for lithium-ion secondary battery

  • Zheng, Hua;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • Two different types of graphite, such as flake graphite (FG) and spherical graphite (SG), were used as anode materials for a lithium-ion secondary battery in order to investigate their electrochemical performance. The FG particles were prepared by pulverizing natural graphite with a planetary mill. The SG particles were treated by immersing them in acid solutions or mixing them with various carbon additives. With a longer milling time, the particle size of the FG decreased. Since smaller particles allow more exposure of the edge planes toward the electrolyte, it could be possible for the FG anodes with longer milling time to deliver high reversible capacity; however, their initial efficiency was found to have decreased. The initial efficiency of SG anodes with acid treatments was about 90%, showing an over 20% higher value than that of FG anodes. With acid treatment, the discharge rate capability and the initial efficiency improved slightly. The electrochemical properties of the SG anodes improved slightly with carbon additives such as acetylene black (AB), Super P, Ketjen black, and carbon nanotubes. Furthermore, the cyclability was much improved due to the effect of the conductive bridge made by carbon additives such as AB and Super P.

A Study on the Improvement of the Thermal Stability of PE Separator for Lithium Secondary Battery Application Using Poly(meta-phenylene isophthalamide) (Poly(meta-phenylene isophthalamide)를 이용한 리튬이차전지용 PE 분리막의 고내열화 연구)

  • Park, Mina;Ra, Byung Ho;Bae, Jin-Young;Kim, Byung-Hyun;Choi, Won-Kun
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • In this study, we prepared separators with improved thermal stability by coating microporous polyethylene (PE) film for lithium secondary battery using poly(meta-phenylene isophthalamide) (Nomex). The mechanical and thermal properties of prepared separators were evaluated by thermal stability test and TMA as a function of the Nomex concentration and coating parameters. The corresponding coated PE separator showed better thermal and mechanical properties than the original PE separator. Electrochemical properties were also assessed by ionic conductivity, cyclic voltammetry and charge/discharge cycle.

Techno-economic Analysis on the Present and Future of Secondary Battery Market for Electric Vehicles and ESS (전기차와 ESS용 이차전지 시장의 현재와 미래에 대한 기술경제적 분석)

  • Jung Seung Lee;Soo Kyung Kim
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Interest in the future of the battery market is growing as Tesla announces plans to increase production of electric vehicles and to produce batteries. Tesla announced an action plan to reduce battery prices by 56% through 'Battery Day', which included expansion of factories to internalize batteries and improvement of materials and production technology. In the trend of automobile electrification, the expansion of the battery market, which accounts for 40% of the cost of electric vehicles, is inevitable, and the size of the electric vehicle battery market in 2026 is expected to increase more than five times compared to 2016. With the development of materials and process technology, the energy density of electric vehicle batteries is increasing while the price is decreasing. Soon, electric vehicles and internal combustion locomotives are expected to compete on the same line. Recently, the mileage of electric vehicles is approaching that of an internal combustion locomotive due to the installation of high-capacity batteries. In the EV battery market, Korean, Chinese and Japanese companies are fiercely competing. Based on market share in the first half of 2020, LG Chem, CATL, and Panasonic are leading the EV battery supply, and the top 10 companies included 3 Korean companies, 5 Chinese companies, and 2 Japanese companies. All-solid, lithium-sulfur, sodium-ion, and lithium air batteries are being discussed as the next-generation batteries after lithium-ion, among which all-solid-state batteries are the most active. All-solid-state batteries can dramatically improve stability and charging speed by using a solid electrolyte, and are excellent in terms of technology readiness level (TRL) among various technology alternatives. In order to increase the competitiveness of the battery industry in the future, efforts to increase the productivity and economy of electric vehicle batteries are also required along with the development of next-generation battery technology.