• Title/Summary/Keyword: Lithium Ion

Search Result 1,357, Processing Time 0.037 seconds

Studies on decomposition of solvent for lithium-ion battery (리튬 이온 전지의 용매 분해 반응에 대한 연구)

  • Chung Kwang-il;Choi Byeong-doo;Kim Shin-Kook;Kim Woo-Seong;Choi Yong-Kook
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.28-32
    • /
    • 1998
  • The electrochemical behavior of film and charge-discharge capacity of Li-ion cell in 1 M $LiPF_6/EC:DME$ (1 : 1, by volume ratio) electrolyte solution was studied using chronopotentiometry, cyclic voltammetry, chronoamperometry, and impedance spectroscopy. The first irreversible capacity was higher than the second irrversible capacity because of solvent decomposition. Especially, passivation film that is electron insulating and ionic conducting were formed on the MPCF by solvent decomposition during the first charge. The solvated Li is co-intercalated with solvent into MPCF electrode. Part of the MPCF is expoliated during co-intercalation of solvent-Li. The MPCF ends up nonuniformly covered by a relatively thick layer of exfoliated particles embedded in a matrix of product by solvent decomposition.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Fabrication of a Porous Copper Current Collector Using a Facile Chemical Etching to Alleviate Degradation of a Silicon-Dominant Li-ion Battery Anode

  • Choi, Hongsuk;Kim, Subin;Song, Hayong;Suh, Seokho;Kim, Hyeong-Jin;Eom, KwangSup
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.249-255
    • /
    • 2021
  • In this work, we proposed a facile method to fabricate the three-dimensional porous copper current collector (3D Cu CC) for a Si-dominant anode in a Li-ion battery (LiB). The 3D Cu CC was prepared by combining chemical etching and thermal reduction from a planar copper foil. It had a porous layer employing micro-sized Cu balls with a large surface area. In particular, it had strengthened attachment of Si-dominant active material on the CC compared to a planar 2D copper foil. Moreover, the increased contact area between a Si-dominant active material and the 3D Cu could minimize contact loss of active materials from a CC. As a result of a battery test, Si-dominant active materials on 3D Cu showed higher cyclic performance and rate-capability than those on a conventional planar copper foil. Specifically, the Si electrode employing 3D Cu exhibited an areal capacity of 0.9 mAh cm-2 at the 300th cycles (@ 1.0 mA cm-2), which was 5.6 times higher than that on the 2D copper foil (0.16 mAh cm-2).

Preparation and Electrochemical Properties of LiFePO4-PSS Composite Cathode for Lithium-ion Batteries

  • Nguyen, Hiep Van;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.177-180
    • /
    • 2012
  • In this study, we prepared $LiFePO_4$- poly (sodium 4-styrenesulfonate) (PSS) composite by the hydrothermal method and ball-milling process. Different wt% PSS were added to $LiFePO_4$. The cathode electrodes were made from mixtures of $LiFePO_4$-PSS: SP-270: PVDF in a weighting ratio of 70%: 25%: 5%. $LiFePO_4$-PSS powders were characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). The electrochemical properties of $LiFePO_4$-PSS/Li batteries were analyzed by cyclic voltammetry, charge/discharge tests, and AC impedance spectroscopy. A Li/$LiFePO_4$-PSS battery with 4.75 wt% PSS shows the best electrochemical properties, with a discharge capacity of 128 mAh/g.

Synthesis and Characterization of Silver Vanadium Oxide as a Cathode for Lithium Ion Batteries

  • Nguyen, Van Hiep;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.139-142
    • /
    • 2016
  • β-AgVO3 nanorods have been successfully synthesized using a soft chemistry route followed by heat treatment. They were characterized by X-ray diffraction and field emission scanning electron microscopy, and their electrochemical properties were investigated using cyclic voltammetry, impedance spectra, and charge-discharge tests. The results showed that the smooth-surfaced nanorods are very uniform and well dispersed, with diameters of ~100-200 nm and lengths of the order of several macrometers. The nanorods deliver a maximum specific discharge capacity of 275 mAh g-1 at 30 mA g-1. They also demonstrated good rate capability with a discharge capacity at the 100th cycle of 51 mAh g-1.

Cycling Performance of Li4Ti5O12 Electrodes in Ionic Liquid-Based Gel Polymer Electrolytes

  • Kim, Jin-Hee;Kang, Yong-Ku;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.608-612
    • /
    • 2012
  • We investigated the cycling behavior of $Li_4Ti_5O_{12}$ electrode in a cross-linked gel polymer electrolyte based on non-flammable ionic liquid consisting of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide and vinylene carbonate. The $Li_4Ti_5O_{12}$ electrodes in ionic liquid-based gel polymer electrolytes exhibited reversible cycling behavior with good capacity retention. Cycling data and electrochemical impedance spectroscopy analyses revealed that the optimum content of the cross-linking agent necessary to ensure both acceptable initial discharge capacity and good capacity retention was about 8 wt %.

Technology Trends in Vacuum Pumping

  • Ormrod, Stephen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.59-59
    • /
    • 2012
  • Vacuum pumping remains central to the performance and economy of many manufacturing processes, scientific instruments and scientific research. More vacuum is being used in many of the latest or leading edge manufacturing processes: Current examples include 3D semiconductor devices, EUV lithography, 450 mm silicon wafers, AMOLED displays, LEDs, Lithium-ion batteries and steel degassing. In other applications, vacuum pumping technology developments have led to much lower product costs which for example have enabled mass spectrometers to become a ubiquitous tool is life science research. Vacuum pumps have continuously evolved during the past 100 years of vacuum-based industrial processing but remain a key component which is often on the critical path of process and product improvements. This is especially so in the growing number of applications where the pumps are highly stressed. This presentation outlines significant developments in vacuum that have brought about this progress. The likely course of continued improvements is discussed in terms of increased performance and reliability, robust by-product handling, better cost efficiency and reduced environmental impact especially power consumption.

  • PDF

The development of controller for lithium-ion battery of electric vehicle (전기자동차용 리튬이온 배터리 제어를 위한 제어기 개발)

  • Cho, Sebong;Hong, Hyunju;Jeon, Ywunseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.96.2-96.2
    • /
    • 2010
  • EV(Electric Vehicle) 차량에서 BMS(Battery Management System) 은 모터에 공급되는 고전압 배터리의 충전상태를 감지하여 VCU(Vehicle Control Unit)에 전송하게 된다. VCU에서는 배터리의 충전상태를 확인하여 모터 구동 전략을 수립하여 각 제어기에 전송하게 된다. 위와 같이 EV에서 배터리 충전상태를 정확하게 감지하지 못한다면, 모터 구동을 위한 전략 수립에 많은 제약이 따르게 된다. 정확한 배터리 충전 상태를 감지하기 위해서는 배터리 각 셀의 전압/전류/온도 등을 측정하여 연산에 의해 결정된다. 그 중 셀 전압 측정 방식은 Photomos relay를 이용한 방식으로 하드웨어적인 오차에 ${\pm}$수십mV보다 더둑 더 정밀하게 측정할 수 있는 방법이 없었다. 하지만, 셀 전압 측정 정밀도를 향상시키기 위해 신규로 개발된 battery monitoring IC를 이용한 BMS의 H/W 개발에 대해 설명할 것이다. 또한, Monitoring IC를 이용한 BMS의 셀 전압 측정 정밀도를 얼마나 개선시킬 수 있는지에 대해 연구하였다.

  • PDF

The inner characteristics comparison analysis of each c-rate of the high power cylindrical lithium ion cell based on the shock test (C-rate별 고출력 원통형 리튬이온 원통형 셀의 충격 시험 기반 내부 특성 비교 분석)

  • Lee, Pyeong-Yeon;Kim, Jong-Hoon;Jang, Min-ho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.383-384
    • /
    • 2016
  • 본 논문에서 shock test를 적용한 고출력 리튬이온 원통형 셀의 내부 전기화학적 특성을 비교하였다. 용량이 동일한 고출력 리튬이온 원통형 셀을 사용하여 shock test를 적용하였다. 충격 전후에 OCV (Open Circuit Voltage) 및 HPPC (Hybrid Pulse Power Characterization) 테스트 기반 방전용량 및 내부저항을 측정하였으며 이를 통해 각 고출력 리튬이온 원통형 셀의 일정한 변화율을 확보하였다.

  • PDF