• Title/Summary/Keyword: Liquid-solid

Search Result 2,341, Processing Time 0.028 seconds

Solid Circulation Rate in a 3-phase (gas/liquid/solid) Viscous Circulating Fluidized Bed

  • Jang, Hyung Ryun;Yoon, Hyuen Min;Yang, Si Woo;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.186-190
    • /
    • 2018
  • For the first time, the characteristics of solid circulation rate ($G_S$) were investigated in a three-phase (gas-liquid-solid) viscous circulating fluidized bed (TPCFB). The solid circulation rate was controlled separately by adjusting the experimental apparatus as well as operating variables. Effects of primary and secondary liquid velocities ($U_{L1}$ and $U_{L2}$), gas velocity ($U_G$), particle size ($d_p$), height of particles piled up in the solid recycle device (h), and viscosity of continuous liquid media (${\mu}_L$) on the value of $G_S$ were determined. The experimental results showed that the value of $G_S$ increased with increases in the values of $U_{L1}$, $U_{L2}$, h and ${\mu}_L$, while it decreased with increasing $U_G$ and $d_p$ in TPCFBs with viscous liquid media. The values of $G_S$ were well correlated in terms of dimensionless groups within this experimental conditions.

The Effects of Fabrication Conditions on Forging Limitation and Mechanical Property in Semi-Solid Forming Process (반용융 단조공정에 있어서 제조 조건이 성형성과 기계적 성질에 미치는 영향)

  • 정경득;강충길
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.214-222
    • /
    • 2001
  • The homogeneous distribution of solid region without liquid segregation is important in terms of high quality component during thixoforming process. In closed die semi-solid forging process, liquid segregation is strongly affected by injection velocity than solid fraction because the material has to travel relatively long distance to fill the cavity through a narrow gate. The designed die by computer simulation data was used to thixoforging process. The thixoforming velocity to prediction the liquid segregation had been determined with strain rate associated with multistage velocity control during compression test of semi-solid material. The optimal forging velocity and die temperature were investigated to produce the near-net-shape compressor component. The mechanical properties of thixoformed component were tested with various die and material temperatures before and after heat treatment.

  • PDF

Developing 500 MHz NB 19F-13C Double Resonance Solid-State NMR Probe for in-situ Analysis of Liquid Crystal Display Panels

  • Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Park, Tae-Joon;Park, Gregory Hyung-Jin;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1577-1580
    • /
    • 2012
  • The orientational and dynamic behavior of liquid crystal molecules on the alignment layer surfaces of liquid crystal display (LCD) devices is crucial to their performance, but there are only a few methods of experimentally elucidating the interactions between the liquid crystals and the alignment layers. Inspired by the natural and technical similarities between membrane proteins in lipid bilayers and liquid crystals in LCDs, we employed solid-state NMR methodologies originally developed for the study of membrane proteins in lipid bilayers for the in-situ analysis of liquid crystal display panels. In this article, we present a home-built 500 MHz narrowbore (NB) The orientational and dynamic behavior of liquid crystal molecules on the alignment layer surfaces of liquid crystal display (LCD) devices is crucial to their performance, but there are only a few methods of experimentally elucidating the interactions between the liquid crystals and the alignment layers. Inspired by the natural and technical similarities between membrane proteins in lipid bilayers and liquid crystals in LCDs, we employed solid-state NMR methodologies originally developed for the study of membrane proteins in lipid bilayers for the in-situ analysis of liquid crystal display panels. In this article, we present a home-built 500 MHz narrowbore (NB) $^{19}F-^{13}C$ double resonance solid-state NMR probe with a flat-square coil and the first application of this probe for the in-situ analysis of LCD panel samples. double resonance solid-state NMR probe with a flat-square coil and the first application of this probe for the in-situ analysis of LCD panel samples.

Experimental Study of Close-Contact Melting of Phase-Change Medium Partially Filled in a Horizontal Cylinder (수평원관내 부분적으로 채원진 상변화물질의 융해과정)

  • 서정세;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2249-2260
    • /
    • 1995
  • An experiment of close contact melting of phase-change medium partially filled in an isothermally heated horizontal cylinder is performed which involves the volume expansion of liquid induced by the solid-liquid density difference. The solid-liquid interface motion and the free surface behavior of liquid were reported photographically. The experimental results show that the curvature of upper solid-liquid interface varied to flat as melting progresses. In addition to the varying interface shape, the melting rate increases with the lower initial height of solid and the free surface height of liquid increases linearly. The experimental results of molten mass fraction were expressed in a function of dimensionless time Fo.Ste$^{3}$4/ and agreed well with the analytical solutions.

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed (점성유체 액/고 순환유동층에서 입자의 순환속도)

  • Hong, Sung Kyu;Jang, Hyung Ryun;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.706-711
    • /
    • 2016
  • Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.489-495
    • /
    • 2015
  • A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.

Holdup and Flow Behavior of Fluidized Solid Particles in a Liquid-Solid Circulating Fluidized Bed

  • Lim, Dae Ho;Lim, Ho;Jin, Hae Ryong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.371-377
    • /
    • 2014
  • Characteristics of holdup and flow behavior of fluidized solid particles were investigated in a liquid-solid circulating fluidized bed ($0.102m{\times}3.5m$). Effects of liquid velocity ($U_L$), particle size ($d_P$) and solid circulation rate ($G_S$) on the solid holdup, overall particle rising velocity, slip velocity between liquid and particles and hydrodynamic energy dissipation rate in the riser were examined. The particle holdup increased with increasing $d_P$ or $G_S$ but decreased with increasing $U_L$. The overall particle rising velocity increased with increasing $U_L$ or $G_S$ but decreased with increasing $d_P$. The slip velocity increased with increasing $U_L$ or $d_P$ but did not change considerably with $G_S$. The energy dissipation rate, which was found to be closely related to the contacting frequency of micro eddies, increased with increasing $d_P$, $G_S$ or $U_L$. The solid particle holdup was well correlated with operating variables such as $U_L$, $d_P$ and $G_S$.

A Study on the Solid-Liquid Separation Characteristics for Highly Concentrated Swine Wastewater Using Model Decanter (모델 데칸트를 이용한 고농도 슬러리상태 양돈폐수의 고액분리특성에 관한 연구)

  • Na, Eun-Su;Gang, Ho
    • 연구논문집
    • /
    • s.30
    • /
    • pp.67-77
    • /
    • 2000
  • This study was performed to investigate the characteristics and performance of model Decanter for separating swine wastewater to solid and liquid which is slurry state with 12.6% TS. Swine wastewater of the slurry tank was pumped into model Decanter which capacity was $2m^3$/hr in 10% TS Slurry inside of bowl was separated to solid-liquid by centrifugal acceleration. Sampling was done in the section of slurry feed pipe, supernatant outflow pipe, cake discharge pipe. After solid-liquid separation TS, $COD_cr$ and slurry volume reduction effect represented 38%, 40%, 19.6% respectively. Relation factor of model Decanter operation slurry concentration, optimum retention time of slurry, overflow velocity of supernatant, supernatant concentration, sludge removal rate etc. Optimal operation conditions can be set and evaluated efficiency based on the experimental results in the case of Decanter adopted for solid-liquid separation in highly concentrated swine wastewater.

  • PDF

Process Analysis for Rheo-Forming of Aluminum Materials (알루미늄재료의 Rheo-forming을 위한 성형공정해석)

  • Seo P. K.;Jung K. Y.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.124-128
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum ahoy has been studied Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The unposed mathematical model is applied to the die shape of the two type. To calculate the velocities and temperature fields during rheology forming process, the each governing equation correspondent to the liquid and solid region are adapted. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity.

  • PDF

Microstructural Changes of $SiO_2-Si$ During Liquid-Phase Sintering (액상소결단계에서 $SiO_2-Si$의 미세조직 변화)

  • 강대갑;정충환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.443-447
    • /
    • 1994
  • Compacts of mixed SiO2-Si powder were liquid phase sintered at 145$0^{\circ}C$ for up to 60 min in a hydrogen atmosphere. In contrast to the conventional microstructures of liquid phase sintered materials, the specimens showed that the solid phase of SiO2 formed a matrix while the liquid phase of Si was the dispersed in the solid matrix. The dispersion of liquid Si pockets was attributed to the high wetting angle of liquid Si on solid SiO2. Because of relatively high solubility of SiO2 in liquid Si at 145$0^{\circ}C$, SiO2 particles accommodated their shape via a solution-reprecipitation process. The liquid Si pockets grew by coalescing with their neighbour pockets. In the latter stage of the sintering, plate-shape grains appeared in the liquid Si pockets. The grains were SiO2 phase precipitated from the liquid Si which was oversaturated with oxygen during cooling to room temperature. By the formation and subsequent removal of the gaseous SiO phase due to the reaction between SiO2 and Si, the specimens became porous.

  • PDF