• 제목/요약/키워드: Liquid-phase synthesis

검색결과 202건 처리시간 0.027초

석탄가스 전환용 액상 메탄올 합성 공정 개발 (Development of a Liquid-Phase Methanol Synthesis Process for Coal-derived Syngas)

  • 신장식;정헌;이종대
    • 한국응용과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.251-257
    • /
    • 2002
  • Liquid-phase methanol synthesis via methyl formate using coal-derived syngas was carried out in a bench-scale(diameter 173 mm and dispersion height 1200 mm) slurry bubble column reactor(SBCR) Under the condition of $180^{\circ}$. 61 atm, 30 L/min, $H_{2}$/CO=2 and a slurry mixture of 2 kg of copper chromite and 0.5 kg of $KOCH_{3}$ suspended in 14 L of methanol, the per pass conversions of syngas is 6 %, maximum concentration of methyl formate 3.088 mol% and maximum synthesis, rate of methanol 0.8 gmole/kg ${\cdot}$ hr. It is a significant evidence that copper chromite powder as heterogeneous catalyst didn't active for the hydrogenolysis of methyl formate to methanol, resulting copper chromite powder was not efficiently suspended in a slurry mixture. To enhance the hydrogenolysis of methyl formate in liquid-phase methanol synthesis process, the designed SBCR have need to use the higher specific gravity solvent and/or decrease the catalyst particle size.

텅스텐염의 액상법을 통한 초미립 WC-Co 분말의 합성 (Synthesis of Nano-sized Tungsten Carbide - Cobalt Powder by Liquid Phase Method of Tungstate)

  • 김종훈;박용호;하국현
    • 한국분말재료학회지
    • /
    • 제18권4호
    • /
    • pp.332-339
    • /
    • 2011
  • Cemented tungsten carbide has been used in cutting tools and die materials, and is an important industrial material. When the particle size is reduced to ultrafine, the hardness and other mechanical properties are improved remarkably. Ultrafine cemented carbide with high toughness and hardness is now widely used. The objective of this study is synthesis of nanostructured WC-Co powders by liquid phase method of tungstate. The precursor powders were obtained by freezen-drying of aqueous solution of soluble salts, such as ammonium metatungstate, cobalt nitrate. the final compositions were WC-10Co. In the case of liquid phase method, it can be observed synthesis of WC-10Co. The properties of powder produced at various temperature, were estimated from the SEM, BET and C/S analyser.

Liquid-Phase Synthesis of Biaryl Compounds by the Hydrogenolysis of Pentaerythritol-Supported Biarylsulfonates

  • Kim, Chul-Bae;Lee, Sung-Kyung;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2459-2466
    • /
    • 2010
  • Unfunctionalized biaryl compounds were parallelly and combinatorially prepared by the traceless hydrogenolysis of biarylsulfonates supported on pentaerythritol. The hydrogenolysis using 2-propylmagnesium chloride in the presence of $dppfNiCl_2$ efficiently generated corresponding biaryl derivatives without any memory of the support. The strategy using pentaerythritol as a small soluble support was disclosed to have a potential to combine the benefits of both SPOS and solution-phase reaction with fast reaction rate, facile isolation of intermediates, easy analysis of intermediates and atom economical manner. The novel tetrapodal support is expected to be an efficient substitute for polymeric supports in many circumstances.

Liquid Phase Deposition of Transition Metal Ferrite Thin Films: Synthesis and Magnetic Properties

  • Caruntu Gabriel;O'Connor Charles J.
    • 한국세라믹학회지
    • /
    • 제43권11호
    • /
    • pp.703-709
    • /
    • 2006
  • We report on the synthesis of highly uniform, single phase zinc and cobalt thin films prepared by the Liquid Phase Deposition (LPD) method. X-Ray diffraction, TGA and EDX measurements support the assumption that the as deposited films are constituted by a mixture of crystallized FeOOH and amorphous M(OH)$_2$ (M=Co, Zn) which is converted upon heat treatment in air at 600?C into the corresponding zinc ferrites. The films with adjustable chemical compositions are identified with a crystal structure as spinel-type and present a spherical or rod-like microstructure, depending on the both the nature and concentration of the divalent transition metal ions. Zinc ferrite thin films present a superparamagnetic behavior above blocking temperatures which decrease with increasing the Zn content and are ferromagnetic at 5 K with coercivities ranging between 797.8 and 948.5 Oe, whereas the cobalt ferrite films are ferromagnetic at room temperature with magnetic characteristics strongly dependent on the chemical composition.

Synthesis and Mesomorphic Properties of New Achiral Liquid Crystals with 3-Alkoxy-2-(alkoxymethyl)-1-propoxy Swallow-Tails

  • Kang, Kyung-Tae;Kim, Jeong-Tak;Hwang, Ryeo-Yun;Park, Song-Ju;Lee, Seng-Kue;Lee, Jong-Gun;Kim, Yong-Bae
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1939-1944
    • /
    • 2007
  • New liquid crystalline (biphenylcarbonyloxy)benzoates with an achiral swallow-tail derived from 3-alkoxy-2- (alkoxymethyl)-1-propanol [(ROCH2)2CHCH2OH, R = Me, Et, Pr, Bu] were prepared. These liquid crystals exhibited the phase sequence (I-SmA-SmCalt-(SmCX)-Cr) and showed antiferroelectric-like Smectic C phase (SmCalt) at temperature lower, and temperature range broader than do the compounds containing a branched alkyl group as a swallow-tail. The temperature ranges of antiferroelectric phase were found to be 30-90 oC and crystallization temperatures were 4-60 oC. The binary mixture of an achiral swallow-tailed liquid crystal and a chiral antiferroelectric liquid crystal, (S)-MHPOBC showed antiferroelectric smectic C phase at temperature much lower than the single chiral antiferroelectric liquid crystal does.

S-L-S 성장기구를 이용한 양질의 골드 나노선 합성 (Synthesis of Au Nanowires Using S-L-S Mechanism)

  • 노임준;김성현;신백균;조진우
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

Recent developments in liquid-phase synthesis and applications of nanomagnesia

  • Hanie Abdollahzade;Asghar Zamani
    • Advances in nano research
    • /
    • 제14권1호
    • /
    • pp.103-115
    • /
    • 2023
  • Recent developments in the synthesis of nanomagnesia of controlled sizes and shapes that are suitable for various applications are reviewed. Two main methods, based on liquid-phase synthesis, i.e., chemical methods and bio-based methods, are used to synthesize nanomagnesia. Conventionally, nanomagnesia was synthesized by chemical methods such as coprecipitation, sol-gel, combustion method, and so on using different chemical agents and stabilizers which later on become responsible for several biological risks because of the toxicity of used chemicals. Bio-based protocols are growing as another environmental friend method for the synthesis of various nanostructures especially nanomagnesia using biomass, plant extracts, alga, and fungi as a source of precursor material. The ideal method should offer better control of textural properties of nanostructures and decrease the necessity for purification of the synthesized nanoproducts, which sequentially removes the use of large amounts of chemicals and organic solvents and manipulation of products that are unsafe to the environment. Finally, the broad applicability of nanomagnesia in diverse areas is presented. Employment of nanomagnesia reported in several laboratory and industrial fields are valued from the standpoint of the significance of these issues for technological requests, as described in the literature. Nanomagnesia has various applications such as antimicrobial performance, removing pollutants, batteries application, and catalysis.