• Title/Summary/Keyword: Liquid-phase sintering

Search Result 337, Processing Time 0.029 seconds

Study of Basic Properties to Develope SiC Ceramic Heater by Self-Charge with Electricity (자기 통전식 SiC세라믹 발열체 개발을 위한 기초 특성 연구)

  • Shin, Yong-Deok;Ko, Tae-Hun;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.124-125
    • /
    • 2007
  • The composites were fabricated $\beta$-SiC and $TiB_2$ powders with the liquid forming additives of 8, 12, 16[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid by pressureless annealing at $1,650[^{\circ}C]$ for 4 hours. Reactions between SiC and transition metal $TiB_2$ were not observed in the microstructure and the phase analysis of the pressureless annealed SiC-$TiB_2$ electroconductive ceramic composites. The relative density, the flexural strength, the Young's modulus and the Vicker's hardness showed the highest value of 82.29[%], 189.5[MPa], 54.60 [GPa] and 2.84[GPa] for SiC-$TiB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature. The relative density of SiC-$TiB_2$ composites was lowered due to gaseous products of the result of reaction between SiC and $Al_2O_3+Y_2O_3$. The electrical resistivity showed the lowest value of 0.012[${\Omega}{\cdot}cm$] for 16[wt%] at 25[$^{\circ}C$]. The electrical resistivity was all negative temperature coefficient resistance (NTCR) in the temperature ranges from 25[$^{\circ}C$] to 700[$^{\circ}C$].

  • PDF

Characteristics of the sintered body of the Al2TiO5 with addition of LAS (β-spodumene) and Fe2O3 (LAS (β-spodumene)와 Fe2O3 첨가에 따른 Al2TiO5의 소결체 특성 연구)

  • Kim, Sang-Hun;Kang, Eun-Tae;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.57-63
    • /
    • 2012
  • $Al_2TiO_5$ ceramics were sintered by a solid-state reaction. LAS (${\beta}$-spodumene) and $Fe_2O_3$ were added to the $Al_2TiO_5$ composition for enhancement of sintering behavior such as mechanical strength and thermal shock resistance. The sintered body was much densified by addition of LAS and $Fe_2O_3$ because LAS formed the liquid-phase and $Fe_2O_3$ suppressed the grain growth. We have systematically investigated the sintering characteristics, microstructures, mechanical properties, and thermal shock resistance according to the change of the amount of additive. When the additive of LAS (20 wt%)-$Fe_2O_3$ was added to $Al_2TiO_5$, it confirmed that superior mechanical properties of the fracture strength of over 120 MPa and the thermal shock resistance of over $1,200^{\circ}C$ were achieved.

Stable Defect Structure of La2O3-Modified BaTiO3 (La$_2O_3$-변형 BaTi$O_3$의 안정한 결함구조)

  • Kim, Jeong Su;Park, Hyu Beom;An, Tae Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.4
    • /
    • pp.309-318
    • /
    • 1994
  • The stable defect structure and the single phase region of La$_2O_3$-modified BaTi$O_3$ have been studied by X-ray diffractometer and scanning electron microscope. The stable defect structure of La$_2O_3$-modified BaTi$O_3$ has been identified as [($Ba^x_{Ba})_{1-2x}(La{\cdot}_{Ba})_{2x}][Ti^x_{Ti})_{1-x/2}(V""_{Ti})_{x/2}]O_3$ which consists of La$^{3+}$ ion substitution for Ba$^{3+}$ ion in the lattice structure and the formation of Ti vacancies for the charge compensation. When 3 mol% of La$_2O_3{\cdot}3/2TiO_3$ was added to BaTi$O_3$, the unit cell structure was transformed from tetragonal to cubic and the solubility limit was about 14 mol%. When La$_2O_3{\cdot}3/2TiO_2$ was added above this solubility limit, the second phase, La$_4Ba_2Ti_5O_{18}$, was formed. In the La$_2O_3$-modified BaTi$O_3$, it was found by the liquid phase sintering process that the sinterability was decreased by excess BaO but increased by excess Ti$O_2$.

  • PDF

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

The role of grain boundary modifier in $BaTiO_3$ system for PTCR device ($BaTiO_3$계 PTC 재료에서 입계 modifier의 역할)

  • Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.553-561
    • /
    • 1993
  • In this study, thr effect of $Bi_2O_3$ and BN addition as grain boundary modifiers on sintering and electrical properties of semiconducting PTCR(Positive Temperature Coefficient of Resistivity) mate rial were analyzed using TMA, XRD and Complex Impedance Spectroscopy method. Bismut.h Ox~de and Boron Nitride were added to Y-doped $BaTiO_3$ respectively. Bismuth sesquioxide up to O.lmol%solubil~ ty limit of $Bi_2O_3$ in Y--$BaTiO_3$ ceramics-retarded densification and grain growth, and further addition mitigated these retardation effects. The resistivity at room temperature increased with increasing amount of $Bi_2O_3$ and thus decreased the PTCR effect, probably due to the $Bi_2O_3$ segregation on the grain boundaries. From the complex ~mpedance pattern, it is known that the grain boundary resisitivity is dominant on the whole resistivity of sample. In the result of applying the defect chemistry, $Bi^{3+} \;and \; Bi^[5+}$ are substituted for Ua and Ti site, respectively. Boron nitride decomposed and formed liquid phase among the $BaTiO_3$ grains. The decomposed com~ ponents made the second phase and existed the tr~ple juntion from the result of EPMA. From the complex impendencc pattern, the gram and grain boundary resistivity were small. The grain size increased with increasing BN contents, and decreased grain boundary resistivity enhanced the PTCR effect.

  • PDF

Property Change of Heat-reservoir Refractory Brick With Varying Compositions and Sintering Conditions Utilizing Mill-scale and Red-firing Clay As Raw Materials (밀스케일과 적점토를 원료로한 축열재에서 원료성분과 소성조선에 따른 특성 변화)

  • Kim, Jeong-Seog;Kim, Hong
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • Firing characteristics, transverse rupture strength, and heat capacity were studied of the heat-reservoir refractory materials made of red-firing clay, mill scale, and water glass. The firing shrinkage increased with increase of the clay proportion in samples. The volume of fired bodies showed shrinkage by drying up to $300^{\circ}C$, steady expansion in the 300-$700^{\circ}C$ range due to phase transition of iron oxides. and drastic expansion above $1200^{\circ}C$. Flexural strength decreased from 5.6 Mpa to 2.35 Mpa with the decrease of the ratio of clay to mill scale from 1:1 to 1:3 Heat capacities changed from 1.1 Joul/g$^{\circ}$C to 1.35 Joul/g$^{\circ}$C with the ratio of millscale to clay ratio from 1:1 to 1:3. Mill scale in the specimen appears to exist as liquid phase during firing. Firing the specimens in air leads to the eruption of the molten mill scale to the sample surfaces. Contrarily, firing samples in a refractory sagger with a cover suppressed the eruption of the molten mill scale to the surfaces. The addition of mill scale gave rise to porous sintered bodies which would delay cooling rates of heat-reservoir brick.

  • PDF

Development of LTCC Materials for RF Module (RF 모듈용 LTCC 소재 개발)

  • 김용철;이경호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2003
  • In this study, new LTCC materials of $ZnWO_4$-LiF system were developed for the application to RF Module fabrication. Pure $ZnWO_4$ must be sintered above $1050^{\circ}C$ in order to obtain up to 98% of full density. The measured dielectric constant ($\epsilon_r$)quality factor ($Q{\times}f0$), and temperature coefficient of resonant frequency ($\tau_f$ were 15.5, 74000 GHz, and $-70ppm^{\circ}C$, respectively. LiF addition resulted in a liquid phase formation at 81$0^{\circ}C$ due to interaction between ZnWO$_4$ and LiF. Therefore, ZnWO$_4$ with 0.5∼1.5 wt% LiF could be densified at $850^{\circ}C$. In the given LiF addition range, the sintering shrinkage increased with increasing LiF content. Addition of LiF slightly lowered the dielectric constant from 15.5 to 14.2∼15 due to lower dielectric constant of LiF. Qxfo value decreased with increasing LiF content. This can be explained in terms of the interaction between LiF and $ZnWO_4$, and inhomogeneity of grain structure.

  • PDF