• 제목/요약/키워드: Liquid-phase reduction

검색결과 172건 처리시간 0.022초

Lagrangian-Eulerian 기법을 이용한 고압 디젤 분무 시뮬레이션의 수치해석격자 의존성 저감에 관한 연구 (Reduction of a Numerical Grid Dependency in High-pressure Diesel Injection Simulation Using the Lagrangian-Eulerian CFD Method)

  • 김사엽;오윤중;박성욱;이창식
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.39-45
    • /
    • 2012
  • In the standard CFD code, Lagrangian-Eulerian method is very popular to simulate the liquid spray penetrating into gaseous phase. Though this method can give a simple solution and low computational cost, it have been reported that the Lagrangian spray models have numerical grid dependency, resulting in serious numerical errors. Many researches have shown the grid dependency arise from two sources. The first is due to unaccurate prediction of the droplet-gas relative velocity, and the second is that the probability of binary droplet collision is dependent on the grid resolution. In order to solve the grid dependency problem, the improved spray models are implemented in the KIVA-3V code in this study. For reducing the errors in predicting the relative velocity, the momentum gain from the gaseous phase to liquid particles were resolved according to the gas-jet theory. In addition, the advanced algorithm of the droplet collision modeling which surmounts the grid dependency problem was applied. Then, in order to validate the improved spray model, the computation is compared to the experimental results. By simultaneously regarding the momentum coupling and the droplet collision modeling, successful reduction of the numerical grid dependency could be accomplished in the simulation of the high-pressure injection diesel spray.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties

  • Urgu, Muge;Turk, Aylin;Unluturk, Sevcan;Kaymak-Ertekin, Figen;Koca, Nurcan
    • 한국축산식품학회지
    • /
    • 제39권1호
    • /
    • pp.23-34
    • /
    • 2019
  • Fat reduction in the formulation of cheese emulsion causes problems in its flowability and functional characteristics during spray-dried cheese powder production. In order to eliminate these problems, the potential of using microparticulated whey protein (MWP) in cheese emulsions was examined in this study. Reduced-fat white-brined cheese emulsions (RF) with different dry-matters (DM) (15%, 20%, and 25% excluding emulsifying salt) were produced using various MWP concentrations (0%-20% based on cheese DM of emulsion). Their key characteristics were compared to full-fat cheese emulsion (FF). MWP addition had no influence on prevention of the phase separation observed in the instable group (RF 15). The most notable effect of using MWP was a reduction in apparent viscosity of RF which significantly increased by fat reduction. Moreover, increasing the amount of MWP led to a decrease in the values of consistency index and an increase in the values of flow behavior index. On the other hand, using high amounts of MWP made the emulsion more liquid-like compared to full-fat counterpart. MWP utilization also resulted in similar lightness and yellowness parameters in RF as their full-fat counterparts. MWP in RF increased glossiness and flowability scores, while decreased mouth coating scores in sensory analyses. Fat reduction caused a more compact network, while a porous structure similar to FF was observed with MWP addition to RF. In conclusion, MWP showed a good potential for formulation of reduced-fat cheese emulsions with rheological and sensorial characteristics suitable to be used as the feeding liquid in the spray drying process.

Dynamics of Nanopore on the Apex of the Pyramid

  • Choi, Seong-Soo;Yamaguchi, Tokuro;Park, Myoung-Jin;Kim, Sung-In;Kim, Kyung-Jin;Kim, Kun-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2012
  • In this report, the plasmonic nanopores of less than 5 nm diameter were fabricated on the apex of the pyramidal cavity array. The metallic pyramidal pit cavity can also utilized as the plasmonic bioreactor, and the fabricated Au or Al metallic nanopore can provide the controllable translocation speed down using the plasmonic optical force. Initially, the SiO2 nanopore on the pyramidal pit cavity were fabricated using conventional microfabrication techniques. Then, the metallic thin film was sputter-deposited, followed by surface modification of the nanometer thick membrane using FESEM, TEM and EPMA. The huge electron intensity of FESEM with ~microsecond scan speed can provide the rapid solid phase surface transformation. However, the moderate electron beam intensity from the normal TEM without high speed scanning can only provide the liquid phase surface modification. After metal deposition, the 100 nm diameter aperture using FIB beam drilling was obtained in order to obtain the uniform nano-aperture. Then, the nanometer size aperture was reduced down to ~50 nm using electron beam surface modification using high speed scanning FESEM. The followed EPMA electron beam exposure without high speed scanning presents the reduction of the nanosize aperture down to 10 nm. During these processes, the widening or the shrinking of the nanometer pore was observed depending upon the electron beam intensity. Finally, using 200 keV TEM, the diameter of the nanopore was successively down from 10 nm down to 1.5 nm.

  • PDF

Co를 첨가한 $ZnO-Bi_2O_3-Sb_2O_3$ 바리스터의 소결 및 전기적 특성 (Sintering and the Electrical Properties of Co-doped $ZnO-Bi_2O_3-Sb_2O_3$ Varistor System)

  • 김철홍;김진호
    • 한국세라믹학회지
    • /
    • 제37권2호
    • /
    • pp.186-193
    • /
    • 2000
  • Effects of 1.0 mol% CoO addition on sintering and the electrical properties of ZnO-Bi2O3-Sb2O3(ZBS) varistor system with 3.0 mol% co-addition of Sb2O3 and Bi2O3 at various Sb/Bi ratio (0.5, 1.0, and 2.0) were investigated. Cobalt had little influence on the liquid-phase formation and the pyrochlore decomposition temepratures of ZBS, while densification was mainly dependent on Sb/Bi ratio: when Sb/Bi=0.5, excess Bi2O3 irrelevant to the formation of pyrochore(Zn2Sb3Bi3O14) forms eutectic liquid at ~75$0^{\circ}C$ which promotes densification and grain growth; with Sb/Bi=2.0, the second phase Zn7Sb2O12 formed by excess Sb2O3 irrelevant to the formation of the pyrochlore retards densification up to ~100$0^{\circ}C$. These phases caused the coarsening and uneven distribution of the second phase particles on the grain boundaries of ZnO above the pyrochlore decomposition temperature(~105$0^{\circ}C$), which led to broad size dist-ribution of ZnO; the specimen with Sb/Bi=1.0 showed homogeneous microstructure compared with the others, which enabled improved varistor characteristics. Doping of Co increased the nonlinearity and the potential barrier height of ZBS, which is thought to stem from improved sintering behavior such as homogenized microstructure due to size reduction and even distribution of the second phase and suppressed volatility of Bi2O3, as well as the improvement in the potential barrier structure via increased donor and interface electron trap densities.

  • PDF

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.

EFFECT OF CIGARETTE PAPER ON CIGARETTEAPPEARANCE BURN RATE AND SIDESTREAM SMOKE

  • Jr Vladimir Hampl
    • 한국연초학회:학술대회논문집
    • /
    • 한국연초학회 2000년도 24회 정기총회 및 43회 학술발표회
    • /
    • pp.12-21
    • /
    • 2000
  • The smoke from a burning cigarette is classified as mainstream, which is the smoke inhaled by the smoker during a puff, and sidestream, which is defined by ISO 10185 as all smoke which leaves a cigarette during the smoking process other than from the butt end. Most of the sidestream smoke is generated during static burn, that is, in between puffs. The amount of sidestream smoke generated by a cigarette depends on the cigarette construction, tobacco blend, and properties of the cigarette paper, The main paper properties affecting sidestream smoke generation are: porosity, basis weight, type and amount of filler, type and amount of burn additive.Sidestream smoke is composed of a visible phase (small liquid droplets) and an invisible phase (gaseous molecules). This paper focuses on the visible portion of the sidestream smoke. Optical methods, which are based on the relationship between light scattering and density of the rising plume of smoke, have been used successfully by the industry. However, the present trend is to use gravimetric methods where the particulate matter is captured on a Cambridge(R) filter pad and weighed. The gaseous portion of the sidestream smoke, which does not contribute to the visible sidestream smoke, passes through the Cambridge filter pad.Sidestream smoke reduction is achieved by modifying certain mass transport processes occurring in a smoldering cigarette. There are four main pathways for reducing sidestream smoke: A) less tobacco burned, B) slower rate of tobacco combustion, C) more efficient trapping of smoke by the cigarette paper, and D) more complete combustion of tobacco. This paper discusses how the physical properties of paper and cigarette construction affect sidestream smoke reduction via the above four mechanisms.

  • PDF

액상환원 기반 Pt/TiO2 촉매 제조를 이용한 포름알데히드 상온 산화 반응 특성 연구 (A Study on the Characteristics of a Pt/TiO2 Catalyst Prepared by Liquid-Phase Ruduction for Formaldehyde Oxidation at Room Temperature)

  • 김재헌;장영희;김거종;김성철;김성수
    • 공업화학
    • /
    • 제34권6호
    • /
    • pp.612-618
    • /
    • 2023
  • 현대 사회는 일상생활 중 80% 이상을 실내에서 생활하고, 생활수준의 향상으로 실내오염물질 노출에 대한 유의가 필요하다. 본 연구에서는 실내오염물질 중 하나인 포름알데히드(HCHO)를 별도의 빛 또는 열 없이 상온에서 제거할 수 있는 액상환원법 기반 Pt/TiO2 촉매의 성능 및 반응 특성을 조사하였다. 활성실험을 통해, 동일한 방법으로 제조된 촉매라도 TiO2 종류에 따라 약 40~80%의 서로 다른 활성을 나타냄을 확인하였다. XRD, BET, XPS 분석을 통해 지지체의 입사 사이즈, 결정구조, 비표면적 및 O/Ti molar ratio를 조사하였고, 지지체 자체의 물성과 성능 간 상관성은 미미함을 확인하였다. HCHO 산화 반응 경로를 조사하기 위해 일산화탄소를 활용한 In situ DRIFT 분석과 H2-TPR을 수행하였다. 그 결과, 촉매의 성능이 활성금속의 산화상태 및 흡착종의 흡탈착 특성에 지배받음을 확인할 수 있었다.

Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials

  • Shin, Yu-Shik;Park, Mira;Kim, Hak-Yong;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2979-2984
    • /
    • 2014
  • Silver nanoparticles have been synthesized by liquid-phase and alcohol reduction methods. Silver-doped silica-complex nanoparticles were prepared using a sol-gel process. The formation, structure, morphology, and particle size of the nanoparticles have been studied using several techniques. Silver nanoparticles of size of 30-40 nm were formed successfully by alcohol reduction. TEM images show that both the concentration and the molecular weight of polyvinyl pyrrolidone (PVP) considerably affect the size of the emerging silver nanoparticles. The number of silver-doped silica-complex particles increased by a mercapto-group treatment that showed a narrower size distribution than that of silica treated with amino groups. The silver/polyester and silver-doped silica/polyester masterbatch chips showed excellent antibacterial activity against Staphylococcus aureus and Escherichia coli.

반용융 재료의 압출공정에 관한 유한요소 해석 (Finite Element Analysis of Extrusion Process in Semi-Solid State)

  • 황재호;고대철;민규식;김병민;최재찬
    • 소성∙가공
    • /
    • 제7권4호
    • /
    • pp.364-374
    • /
    • 1998
  • It is the objective of this study to analyze the effect of various process variables on the quality of extruded product and extrusion force for semi-solid extrusion of Al2024 with solid phase structure of globular type by the finite element method. Process variables are initial solid fraction, ram speed, semi-angle of die, and reduction in area. The results of experiment are compared with those of simulation in order to verify the usefulness of the developed finite element program. The flow and deformation of semi-solid alloy are analyzed by coupling by coupling the deformation of porous skeleton and the flow of liquid phase. It is also assumed that initial solid fraction is homogeneous.

  • PDF