• Title/Summary/Keyword: Liquid-Liquid Heat Exchanger

Search Result 157, Processing Time 0.024 seconds

Performance Characteristics of Liquid-Cooling Heat Exchangers with MPCM Slurry Designed for Telecommunication Equipment (MPCM을 적용한 액냉형 냉각기의 성능 특성에 관한 연구)

  • Jeon, Jong-Ug;Kim, Yong-Chan;Choi, Jong-Min;Hyun, Dong-Soo;Yun, Rin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.710-717
    • /
    • 2007
  • Electric and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers with MPCM slurries were designed and tested by varying geometry and operating conditions. The liquid-cooling heat exchangers with 4-paths showed higher cooling performance than the others. The cooling performance of liquid cooling heat exchanger with MPCM slurries was more enhanced than that of the air cooling system. It's performance was also slightly superior to that of the water cooling system at the inlet temperature of $19^{\circ}C$.

A study of heat transfer characteristics on the Multi-pass Heat exchanger with Minichannel (다분지 미니 채널 열교환기의 액단상 열전달 특성에 관한 연구)

  • Im, Yong-Bin;Lee, Seung-Hun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.357-362
    • /
    • 2006
  • This research focused on the multi-pass heat exchanger using the minichannel possessing the spring fin. An air-water was used as working fluid. The characteristics of liquid single phase heat transfer were verified. The compact heat exchanger (heat transfer area density : ${\beta}=2,146 m^2/m^3$), based on the shape of header(Top combining header), 63 minichannels ($D_i$ : 1.4 mm, L : 0.25 m) and the air side adopting the copper wire spring fin, was fabricated. The heat transfer area density of the air side was improved up to 161% when compared with the conventional fin-tube heat exchanger that adopts the heat transfer tube with the inner diameter of 5 mm. With regard to heat transfer performance, heat transfer rate per unit volume increased up to 142% when compared with the fin-tube heat exchanger adopting the heat transfer tube with the inner diameter of 5 mm.

  • PDF

Test of The HTS Power Cable Cooling System (초전도케이블 냉각시스템의 냉각특성 시험)

  • 염한길;고득용;김익생;김춘동;김도형
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.281-283
    • /
    • 2003
  • High temperature superconducting power cable requires forced flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65K and 80K. Subcooler heat exchanger uses saturated liquid nitrogen boiling on the shell side to subcool the circulating liquid nitrogen stream that cools the HTS cable. The paper describes performance tests of the cooling system. The test items are heat exchanging performance of subcooler. pressure drop between supply and return lines, heat transfer coefficient inside former, cable cryostat heat leak and simulation of electrical load of HTS cable.

  • PDF

A Study on Composition and Utilization of Waste Heat Recovery System Assuming Aerobic Liquid-composting Fermentation heat (호기성 액비화 발효열을 가정한 폐열회수시스템 구성 및 활용 연구)

  • Lim, Ryugap;Jang, Jae Kyung;Kang, Taegyung;Son, Jinkwan;Lee, Donggwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.56-66
    • /
    • 2021
  • In this study, a waste heat recovery system was devised and the performances of components incorporated to recover the heat generated during the processing of aerobic liquid-composting in a livestock manure treatment facility were analyzed. In addition, the availability of recovered heat was confirmed. The heat generated by liquid fermentation in the livestock manure treatment facility was also checked. Experimental temperatures were set at 35, 40, and 45 ℃ based on considerations of the uniformity of aerobic liquid-composting fermentation tank temperature and its operating range (34.5 ~ 43.9 ℃). Recovered heat energies from the combined heat exchanger, which consisted of PE and STS pipes, were 53.5, 65.6, 74.4 MJ/h, The heat pump of capacity 5 RT was heated at 95.6, 96.1, 98.9 MJ/h and the heating COPs of the pump were 4.53, 4.62, and 4.65, respectively. The maximum hot water production capacity of the heat exchanger assuming a fermentation tank temperature of 45 ℃ confirmed an energy supply of 56 360 kcal/day. The heating capacity of the FCU linked to the heat storage tank was 20.8 MJ/h, and the energy utilization efficiency was 96.1%. When livestock manure was dried using the FCU, it was confirmed that the initial function rate was reduced by 50.5 to 45.8 % after drying.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

A Preliminary Study of Low Temperature Condition by Heat Exchanger (열교환기를 이용한 저온 환경 구축에 대한 기초 연구)

  • Lee, Yang-Suk;Yang, Jae-Joon;Kim, Yoo;Ko, Young-Sung;Lim, Byeung-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.23-26
    • /
    • 2007
  • A preliminary, study of low temperature condition was performed to simulate high altitude condition. The mixed air temperature were investigated at various condition by experiments using cryogenic air by heat exchanger and normal temperature air. An experimental setup was constructed to simulate low temperature condition with liquid nitrogen. To control mass flow rate, orifice and pressure regulators were used. The experimental results show that the mixed air temperature increases linearly with mass flow rate of normal temperature air. Therefore it can be help to simulate a low temperature condition of high altitude.

  • PDF

An Experimental Study of Condensation in Plate Heat Exchangers with R-410A (R-410A를 적용한 판형 열교환기의 응축 성능에 관한 실험적 연구)

  • Byun, J.H.;Lee, K.J.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.304-310
    • /
    • 2000
  • The experimental study has been conducted on heat transfer characteristics of the plate heat exchangers(PHE) by several researchers. However most of all were focused on a gasket-type plate heat exchanger. Therefore further studies are need for a brazed-type. In the present study, a brazed type plate heat exchanger was tested at a chevron angle of $70^{\circ},\;55^{\circ}$ and $45^{\circ}$ with R-22 and R-410A. Condensation temperatures were $24.5^{\circ}C$, and mass flux was ranged from 35 to $60kg/m^2s$. The inlet and exit conditions are in a superheated vapor and subcooled liquid, respectively. The heat transfer coefficient increased with the chevron angle. The heat transfer coefficient of R-22 was lamer than that of R-410A for all chevron angles.

  • PDF

A Study on the thermal pinch problem in the counterflow heat exchanger (역대향류 열교환기의 열 핀치(thermal pinch)에 관한 연구)

  • Choi, Sung-Eun;Chin, Young-Wook
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.659-667
    • /
    • 2008
  • The LNG carriers have been propelled by steam turbines and the LNG boil-off(BOG) has been used as fuel or vented. However, as the alternative propulsion systems such as diesel engines are being equipped on the LNG carriers for better fuel efficiency, a need for the LNG BOG re-liquefaction system that liquefies the BOG and sends the liquid BOG back to the LNG cargo has arisen in recent years. This study investigates the design of the BOG re-liquefaction system based on the reverse Brayton refrigeration cycle. The thermodynamic and heat exchanger analysis are carried out and the limitations to the system performance are discussed.

  • PDF

An Analytical Study on a Heat Transfer Mechanism with Boiling Effect between Two Fluids in a Mini-channel (미세채널내 증발을 고려한 두 유체간 열전달현상에 대한 해석적인 연구)

  • Yoo, YoungJoon;Choi, Sangmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • In order to estimate the efficiency of an evaporative heat exchanger having mini channel, the equations to calculate heat exchanger properties, those are air temperatures and water temperatures etc, are derived from the governing equations based on the Navier-Stokes equation, even though there are several assumptions to make problem simplify. There are three heat transfer zones at the mini channel heat exchanger depending on the water condition. So, there are three governing equations and solutions to calculate the properties. As the results of this study, the equations to calculate a saturation point and a dry point are derived to evaluate an evaporative heat exchanger having micro channel. It is supposed to predict and evaluate the performance of a mini channel heat exchanger with evaporation of liquid.

Study on Hydrogen Gas Pre-cooling Temperature and Heat Exchanger Area of Pre-cooling System for Production of Liquid Hydrogen (액체 수소 생산을 위한 예냉 시스템의 수소 가스 예냉 온도 및 열 교환기 면적에 관한 연구)

  • MIN GWAN BAE;DONG WOO HA;HYUN WOO NOH;SEUNG BIN WOO;KI HEO;YOUNG MIN SEO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.290-299
    • /
    • 2024
  • In this study, a theoretical study was conducted on the pre-cooling temperature of hydrogen gas and the heat exchanger area in a small-scale liquefied hydrogen system. The small-scale liquefaction system was built and liquid hydrogen production experiments were performed. In this process, the temperature of precooled hydrogen gas was measure to be about 120 K, and then the possibility of a cause was analyzed through pressure analysis of hydrogen gas and container, and analysis of the amount of liquid hydrogen produced. It was found that some reasonable results were obtained from the theoretical approaches. Based on this theoretical approach, we aim to improve the production of liquid hydrogen by optimizing the heat exchange area according to flow rate.