• Title/Summary/Keyword: Liquid-Liquid Extraction

Search Result 1,061, Processing Time 0.026 seconds

Effective determination of nicotine enantiomers from e-liquids and biological fluids by high performance liquid chromatography (HPLC) using dispersive liquid-liquid microextraction (DLLME)

  • Song, Seunghoon;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.180-190
    • /
    • 2021
  • This study compared the efficacy of chiral GC and chiral HPLC for the analysis of nicotine. To develop a suitable dispersive liquid-liquid microextraction (DLLME) method, the following parameters were optimized: pH, extraction solvent, dispersive solvent, type and quantity of salt, and laboratory temperature. The validation of the method was carried out by the established HPLC method. The LODs were 0.11 ㎍/mL and 0.17 ㎍/mL for the (S)- and (R)- enantiomers, respectively. The LOQs were 0.30 ㎍/mL and 0.44 ㎍/mL, respectively. The optimal calibration range was between 0.30-18 ㎍/mL and 0.44-4.40 ㎍/mL, respectively, and the correlation coefficient (r2) was 0.9978-0.9996. The intra-day accuracy was 79.9-110.6 %, and the intra-day precision was 1.3-12.0 %. The inter-day accuracy was 87.8-108.0 %, and the inter-day precision was 4.0-12.8 %. E-liquid and biological fluids (urine and saliva) were analyzed using the established method.

Optimization of Extraction of Astaxanthin from Portunus trituberculatus by Ionic Liquids (이온성 액체를 사용한 꽃게 껍질에서 아스타크산틴 추출 조건의 최적화)

  • Lee, Yu Jin;Lee, Yu Ri;Tang, Baokun;Row, Kyung Ho
    • KSBB Journal
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2013
  • Astaxanthin is one of the carotenoid with strong antioxidant. The conditions of extraction of astaxanthin from Portunus trituberculatus were optimized in this work. Six factors of conditions such as, extraction method, extraction solvent, ratio of solvent to raw material, temperature, and time, were investigated. For the increase of the extraction yield, ionic liquids were used as additives in the extraction solvent. The optimum extraction conditions were found: heat reflux extraction, Dichloromethane/methanol (25:75, v/v) as solvent, 1:30 of the ratio of solvent raw material, $80^{\circ}C$, 90 min, and ionic liquid as additive. As a result, 45.81 ${\mu}g/g$ of astaxanthin was extracted from waste.

Extraction of Biomolcules by Ionic Liquids (이온성 액체를 이용한 생물분자의 추출)

  • Lee, Woo Yun;Lee, Yong Hwa;Lee, Jun;Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.23-26
    • /
    • 2014
  • As an effective separation method for biomolecules, aqueous two-phase systems based on ionic liquids were suggested. Hydrophobic ionic liquids are more expensive and viscous in spite of their usage in the ionic liquid/water biphasic extraction compared with hydrophilic ionic liquids. In case of aqueous two-phase systems using hydrophilic ionic liquids, they can be diluted in aqueous phase. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of ionic liquids to aqueous salts solutions. The viscosity of ionic liquid aqueous phase is proportional to the cation chain length in ionic liquids. It is founded that the ionic liquid based aqueous two phase systems are effective for the separation of biomolecules such as acrylic acid.

Simultaneous detection for synthetic antimicrobials in muscle by high performance liquid chromatography-mass selective detector (HPLC-MSD) (HPLC-MSD 를 이용한 식육 중 합성항균제의 동시분석)

  • Hong In-Suk;Choi Yoon-Hwa;Kwon Taek-Boo;Lee Jung-Hark
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.3
    • /
    • pp.317-330
    • /
    • 2006
  • This study was conducted to develop the analytical method about simultaneous determination for synthetic antimicrobials in muscle by high performance liquid chromatography - mass selective detector (HPLC- MSD). Solid phase extraction (SPE), matrix solid phase dispersion (MSPD) and liquid-liquid extraction (LLE) have been adapted as pretreatment procedures for HPLC- MSD. Among various solvent tested, methanol was chosen for extraction of synthetic antimicrobials in muscles. For the optimized response, the values of various MS parameters including fragment voltage, drying gas flow, nebulizer pressure, drying gas temperature were verified. The average recovery rates using MSPD and SPE for muscles of bovine and pork were 78.9-127.1% and 78.3-121.7%, respectively. This method was verified the satisfactory performance for fourteen synthetic antimicrobials excepting carbadox in muscle of pork as detection limit of $0.05{\mu}g/g$ on API/ES SIM mode.

Determination of Normal Saturated- and Polycyclic Aromatic Hydrocarbons in the River Water of Bangladesh by Liquid-Liquid Extraction and Gas Chromatography

  • Mottaleb, M.A.;Sarma, D.K.;Sultana, S.;Husain, M.M.;Alam, S.M.M.;Salehuddin, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.99-105
    • /
    • 2003
  • A liquid-liquid extraction followed by evaporative concentration method was used to determine the concentration of normal, or straight chain, saturated hydrocarbons (NSH) $(C_{10}\;to\;C_{24})$ and polycyclic aromatic hydrocarbons (PAH) here defined as: fluorene, anthracene, pyrene, chrysene and perylene, in the Buriganga River water of Bangladesh. Samples were collected from 5 and 25 cm depth of water at the southern, middle and northern parts of the river at Postogolla, Sadarghat and Sowarighat stations. Hydrocarbons were extracted from 450 mL of water into 75 mL n-hexane and then concentrated into 1 or 2 mL solution by evaporation. These solutions were analyzed by gas chromatography. The highest and lowest concentrations were determined as $257\;{\mu}gL^{-1}\;for\;C_{13}\;and \;0.24\;{\mu}g\;L^{-1}\;for\;C_{22}$ at 5 ㎝ depth of water, at the northern part of the Sowarighat and southern part of the Postogolla, respectively. This method could allow the analysis of water for $C_{22}$ as low as $0.24\;{\mu}g\;L^{-1}$.

Experimental investigations and development of mathematical model to estimate drop diameter and jet length

  • Roy, Amitava;Suneel, G.;Gayen, J.K.;Ravi, K.V.;Grover, R.B.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3229-3235
    • /
    • 2021
  • The key process used in nuclear industries for the management of radiotoxicity associated with spent fuel in a closed fuel cycle is solvent extraction. An understanding of hydrodynamics and mass transfer is of primary importance for the design of mass transfer equipment used in solvent extraction processes. Understanding the interfacial phenomenon and the associated hydrodynamics of the liquid drops is essential for model-based design of mass transfer devices. In this work, the phenomenon of drop formation at the tip of a nozzle submerged in quiescent immiscible liquid phase is revisited. Previously reported force balance based models and empirical correlations are analyzed. Experiments are carried out to capture the process of drop formation using high-speed imaging technique. The images are digitally processed to measure the average drop diameter. A correlation based on the force balance model is proposed to estimate drop diameter and jet length. The average drop diameter obtained from the proposed model is in good agreement with experimental data with an average error of 6.3%. The developed model is applicable in both the necking as well as jetting regime and is validated for liquid-liquid systems having low, moderate and high interfacial tension.

The Stability of Liquid Membrane in the Extraction of the Zn Component by Liquid Surfactant Membrane Process (유화형 액막법에 의한 Zn 성분의 추출시 액막의 안정성)

  • Oh, Chi-Hoon;Hwang, Jai-Suk;Shim, Jae-Woo;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.551-559
    • /
    • 1997
  • The stability of liquid membrane in the extraction process was investigated through the extraction of the Zn component by using W/O/W emulsion type liquid surfactant membrane which was $D_2EHPA-Kerosene-Span$ $80-H_2SO_4$ system. The highest stability for liquid membrane through the Zn extraction process was obtained under the following conditions. That conditions were that span 80 concentration, as surfactant, of 2~3 vol.%;$D_2EHPA$ concentration, as extractant, of 5~7 vol.%;paraffin oil concentration, as membrane strengthening agent, of 10 vol.%;emulsion volume ratio to the external aqueous phase volume of 0.1, and internal aqueous phase volume ratio to the organic phase volume of 1.0.

  • PDF

Quantitative determination of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in chlorinated drinking water using sample enrichment followed by liquid-liquid extraction and GC-MS (시료 농축 후 액-액-추출과 GC-MS를 이용한 염소 소독 음용수중 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone(MX)의정량 분석)

  • Kim, Hekap;Song, Byeong yeol
    • Analytical Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • This study explores the means by which MX can be effectively extracted from chlorinated water 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a potent mutagen commonly found in chlorinated drinking water at concentrations of up to a few hundred ng/L, was quantitatively determined using sample enrichment followed by liquid-liquid extraction (LLE), derivatization to methylated form, and analysis with GC-MS. A 4-L water sample was enriched to a concentration of 0.4 L using a vacuum rotary evaporator at 30 ℃. MX in the water was extracted using ethyl acetate (100 mL × 2) as a solvent and MX in the extract was methylated with 10 % H2SO4 in methanol. MX was recovered at a rate of 73.8 %, which was higher than that (38.1 %) for the resin adsorption method. The limit of quantification and repeatability (as relative standard deviation) were estimated to be 10 ng/L and 2.2 %, respectively. This result suggested that LLE can be used for the determination of MX in chlorinated water as an alternative to more time-consuming resin adsorption method.

Multicomponent pesticides analysis by automated liquid phase microextraction (자동화된 LPME(Liquid Phase Microextraction)장치를 이용한 다성분 농약분석)

  • Myung, Seung-Woon;Jung, Hong-Rae
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In this study, the optimum conditions for the LPME (liquid phase microextraction) were investigated to overcome several shortcomings of traditional liquid-liquid extraction method. The LPME, which is automatic and dynamic, was used to analyze the five pesticides (dementon-S-methyl, diazinon, parathion, fenitrothion, EPN) extracted from vegetable, and HP 6890 GC/NPD was used as an analytic instrument. It was possible to optimize the extraction condition using the automatic LPME. The optimum extraction rate was obtained at pH 3.0 and $100{\mu}g/mL$ of salt concentration and standard curve showed linearity with over $R^2=0.9921$ in the range of $0.2{\sim}10{\mu}g/g$. The relative standard deviations were 7.7%, 9.8%, 7.8%, 9.7% and 8.2% in the $5.0{\mu}g/g$ concentration of dementon-S-methyl, diazinon, parathion, fenitrothion and EPN, respectively. The acquired accuracies were satisfactory showing 12.7%, 7.8%, 10.4%, -6.7% and -0.7% for dementon-S-methyl, diazinon, parathion, fenitrothion and EPN respectively.

A Simple and Efficient Method to Determine Montelukast in Rat Plasma Using Liquid-Liquid Extraction and Tandem Mass Spectrometry

  • Kim, Dong Yoon;Lee, Hyo Chun;Jang, Yong Jin;Kim, Jin Hee;Lee, Ha Ryeong;Kang, Myung Joo;Choi, Yong Seok
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.71-76
    • /
    • 2020
  • While montelukast (ML), a cysteinyl-leukotriene type 1 receptor (CysLT1) antagonist is widely used to treat symptoms of rhinitis or asthma, its formulations are mainly limited to solid preparation due to its instability. Recently, there have been attempts to develop various ML dosage forms, and this situation increases the demand of sensitive and creditable methods to determine ML in various samples such as plasma. Thus, here, a simple and efficient method to determine ML in rat plasma using liquid-liquid extraction (LLE) and multiple reaction monitoring was presented. The mixture of DCM:EtOAc (25:75, v/v), the optimized extract solvent for LLE was found to be effective to extract ML without hydrophilic salts and proteins from the sample with limited volume. Also, the use of zafirlukast, instead of expensive ML-d6, as the internal standard makes the present method economical. The developed method was successfully validated in terms of selectivity, matrix effects (-14.8--6.9%), linearity (r230.998 within 0.5-500 ng/mL), sensitivity (the limit of detection and the lower limit of quantitation, ≤0.5 ng/mL), accuracy (88.4-100.6%), precision (3.0-13.3%), and recovery (80.8-86.3%) by following the FDA guidelines. Finally, the applicability of the validated method to pharmacokinetics (PK) studies was confirmed by the successful determination of PK parameters through it following oral administration of Singulair® granule in rats. Therefore, the present method can contribute to the development of new ML formulations through its performance to determine ML in rat plasma efficiently and sensitively.