• 제목/요약/키워드: Liquid water path

검색결과 34건 처리시간 0.034초

극저온 식각장비용 정전척 쿨링 패스 온도 분포 해석 (Temperature Analysis of Electrostatic Chuck for Cryogenic Etch Equipment)

  • 두현철;홍상진
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.19-24
    • /
    • 2021
  • As the size of semiconductor devices decreases, the etching pattern becomes very narrow and a deep high aspect ratio process becomes important. The cryogenic etching process enables high aspect ratio etching by suppressing the chemical reaction of reactive ions on the sidewall while maintaining the process temperature of -100℃. ESC is an important part for temperature control in cryogenic etching equipment. Through the cooling path inside the ESC, liquid nitrogen is used as cooling water to create a cryogenic environment. And since the ESC directly contacts the wafer, it affects the temperature uniformity of the wafer. The temperature uniformity of the wafer is closely related to the yield. In this study, the cooling path was designed and analyzed so that the wafer could have a uniform temperature distribution. The optimal cooling path conditions were obtained through the analysis of the shape of the cooling path and the change in the speed of the coolant. Through this study, by designing ESC with optimal temperature uniformity, it can be expected to maximize wafer yield in mass production and further contribute to miniaturization and high performance of semiconductor devices.

Axial and Radial Gas Holdup in Bubble Column Reactor

  • Wagh, Sameer M.;Ansari, Mohashin E. Alam;Kene, Pragati T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1703-1705
    • /
    • 2014
  • Bubble column reactors are considered the reactor of choice for numerous applications including oxidation, hydrogenation, waste water treatment, and Fischer-Tropsch (FT) synthesis. They are widely used in a variety of industrial applications for carrying out gas-liquid and gas-liquid-solid reactions. In this paper, the computational fluid dynamics (CFD) model is used for predicting the gas holdup and its distribution along radial and axial direction are presented. Gas holdup increases linearly with increase in gas velocity. Gas bubbles tends to concentrate more towards the center of the column and follows a wavy path.

구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험 (Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation)

  • 김아현;염성수;장동영
    • 대기
    • /
    • 제28권2호
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

서울에서의 미세먼지 저감을 위한 인공강수 가능성 진단 (An Assessment of the Effectiveness of Cloud Seeding as a Measure of Air Quality Improvement in the Seoul Metropolitan Area)

  • 송재인;염성수
    • 대기
    • /
    • 제29권5호
    • /
    • pp.609-614
    • /
    • 2019
  • Cloud seeding experiment has been proposed as a way to alleviate severe air pollution problem because, if successful, artificially produced precipitation through cloud seeding could scavenge out some portion of air pollutants. As a first step to verify the practicality of such experiment, seedability of the clouds observed in Seoul is assessed by examining statistical characteristics of some relevant meteorological variables. Analyses of 9 years of Korea Meteorological Agency Seoul station data indicate that as PM10 mass concentration increases, cloud amount, liquid water path, and ice water path decrease, but the difference between temperature and dew point temperature tends to increase. Such finding suggests that cloud seeding becomes less feasible as air pollution becomes more severe in the Seoul metropolitan area, at least in a statistical sense. For some individual severe air pollution events, however, seedable clouds may exist and indeed cloud seeding experiments can be successful. Therefore, detailed investigation on cloud seedability for individual severe air pollution events are highly required to make a concrete assessment of cloud seeding as a way to alleviate severe air pollution problem.

화재 진압용 스프링클러 헤드 유형에 따른 살수 균일도 분석 (Analysis of Water Flux Uniformity for Various Fire Sprinkler Head Type)

  • 방새미;안찬섭;김태훈
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.97-104
    • /
    • 2023
  • A sprinkler is a fire suppression system that extinguishes combustible materials in the early stages of a fire, creating a spray. However, spray formation method of the sprinkler can result in an uneven distribution of water spray on the surface of combustible materials. It is necessary to ensure a consistent water flux density regardless of the spray direction and angle. In this study, the water flux distribution was analyzed for the various types of sprinkler head: circular, flush, pendent, and upright types. All sprinkler heads have a K-factor of 80 LPM/(0.1MPa)0.5. In this study, water collection cubes were used to examine the water flux distribution. The upright type sprinkler head showed a low standard deviation in total sprayed area, indicating a high level of uniformity. The upright type head showed the lowest standard deviation in the radial direction, and also showed the lowest standard deviation in the azimuthal direction. Upright sprinkler head has no obstructing structure along the path of droplets after they are generated. For this reason, upright sprinkler head showed the most uniform water flux distribution on the floor.

로켓엔진 헤드용 냉각 매니폴드의 해석 및 시험 (Numerical Study and Firing Test of a Liquid Rocket Engine Head with a Coolant Manifold)

  • 박진수;최지선;유이상;고영성;김선진;신동순
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1021-1025
    • /
    • 2017
  • 열교환기 지상시험 설비의 내구성 확보를 위해 필수적인 냉각수 매니폴드에 대해 열/유동해석을 진행했으며, 분사기와 유로의 배열 등의 형상을 결정해 개발 중인 엔진의 헤드에 적용하였다. 제작된 엔진 헤드에 대한 검증시험이 진행됐으며, 엔진의 분사기면에 도포된 열차단코팅(TBC) 등에서 열적 손상이 확인되지 않았다. 연소시험 결과와 수치해석을 비교하면 냉각수 출구온도가 $15^{\circ}C$ 정도의 차이를 보이지만 냉각수 매니폴드 상부에 위치하는 액체산소 매니폴드, 열 차폐코팅, 화염면의 위치 등을 감안하면 합당한 수준으로 판단된다.

  • PDF

마이크로 캡슐 잠열재 슬러리를 적용한 미소채널 열교환기의 열분배 성능평가 (Experimental Study on the Heat Distribution in the Rectangular Mini Channel Heat Exchangers with MPCM Slurry)

  • 전종욱;백창현;김용찬;김영득;최종민
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.645-650
    • /
    • 2006
  • The heat transfer performance and energy transport ability are relatively high due to higher specific heat. Therefore, it can be used in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, liquid-cooling heat exchangers were tested to provide performance data for MPCM slurry. The liquid-cooling heat exchangers had twelve rectangular channels with flow paths of 1, 2, 4 and 12. Silicon rubber heaters were used to control the heat load to the heat exchanger. Heat input ranged from 293 to 800 W, and inlet temperatures of working fluid varied from 15S to $27^{\circ}C$. The standard deviation of surface temperature was strongly affected by the coolant of MPCM Slurry, All MPCM-cooling heat exchangers showed higher cooling performance than the water-cooling heat exchanger except one path channel heat exchanger.

  • PDF

액체중을 상승하는 공기포의 괸벽영향 (Effect of Wall Proximity on Air Bubbles Rising in Liquid)

  • Kang, Joon Mo
    • 대한기계학회논문집
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 1977
  • 관벽의 영향을 무시할 수 있는 요기내의 액체중을 상승하는 단일공기포의 상승속도, 형산, 경로를 명확히 하고 원주형관, 정방형관, 평행평판간의 액체중을 상승하는 단일기포의 상승속도에 미치는 관벽영향을 구하였다. 원주형관을 상승하는 공기포는 dimensionless plot로 실험치를 통 적으로 표현할 수가 있었으며 관벽영향을 받지않고 관중을 상승할 수 있는 공기포에 대한 최저의 관경을 결정할 수가 있었다.

Self-wastage에 의한 2.25Cr-1Mo Steel 시편의 Re-open 현상 (Reopening Phenomena of the 2.25Cr-1Mo Steel Specimen by Self-wastage)

  • 정경채;권상운;최종현;박진호;황성태
    • 공업화학
    • /
    • 제10권4호
    • /
    • pp.531-536
    • /
    • 1999
  • 누출시험 장치를 이용하여 미량 물 누출 실험을 수행하였다. 2.25Cr-1Mo 시편의 누출경로는 나트륨-물 반응 생성물에 의해 plugging되는 경우가 발생하였으나, 대부분 re-open상태를 나타내었다. 또한 누출 경로가 완전 re-open된 후 나트륨 부위에서 시편의 self-wastage pattern은 온도에 영향을 받지 않음을 알 수 있었으며, 누출경로가 re-open 되면서 나타나는 defected 크기는 대략 5 mm 이내임을 알 수 있었다. 누출 경로가 완전 re-open 되는데 걸리는 시간은나트륨 온도가 높을수록 짧게 나타났으며, 평균적으로 $450^{\circ}C$에서 143분, $475^{\circ}C$의 경우 40.7분, $510^{\circ}C$의 경우 34.7분을 나타내었다.

  • PDF

발전소용 고압 바이패스 밸브 내부 유동해석 (Analysis of Flow through High Pressure Bypass Valve in Power Plant)

  • 조안태;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권6호
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.