• Title/Summary/Keyword: Liquid velocity

Search Result 1,067, Processing Time 0.025 seconds

An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 촉매대 형상(L/D) 최적화 연구)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • A ground hot-firing test was conducted to take out the optimal design configurations for the catalyst bed of liquid-monopropellant hydrazine thruster which could be used for primary engine or attitude control thruster of space vehicles. Performance characteristics with the variation of thrust-chamber length are investigated in terms of thrust, specific impulse, chamber pressure, characteristic velocity, and hydrazine decomposition rate. Additionally, the correlations between propellant-supply pressure and performance parameters are given. As results, increase of catalyst-bed length leads to performance degradation in this test condition, and also decreases propellant consumption efficiency with the supply pressure variation.

An Experimental Investigation of the Effect of the Entrance Shape of Sudden Contraction on Single and Two-Phase Pressure Drop in Horizontal Air-Water Flow (공기와 물의 수평유동에 있어 관의 급격한 입구축소 모양이 단상 및 이상유 압력강하에 미치는 영향에 관한 실험적 연구)

  • Chun, Moon-Hyun;Baek, Joo-Seok;Park, Jong-Ryul
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.123-133
    • /
    • 1989
  • The pressure drops through contractions in horizontal single and two-phase flow were investigated. A total of 167 measurements were made for four different entrance shapes to study the effects of the entrance shape on the pressure drop through a contraction in horizontal single and two-phase flow. From this data, pressure drops were calculated and compared with the pressure drops predicted by analytical models for single and two-phase flow. For single phase How the agreement between the data and predictions is within $\pm$25%, whereas for two-phase flow Hoopes model, which gives a better agreement than the homogeneous model, underpredicts the data as much as 45% In addition, the effects of void fraction and liquid phase mass velocity on the pressure drop through the sudden How channel contraction were investigated for two-phase flow.

  • PDF

An Experimental Study of Cuttings Transport in Directional Slim Hole Drilling (방향성 소구경 굴착의 입자 이송특성에 관한 연구)

  • Han, Sang-Mok;Kim, Jeong-Hwan;Hwang, Young-Kyu;Woo, Nam-Sub;Kim, Young-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.20-25
    • /
    • 2012
  • During drilling, the precipitation velocity of cuttings within an annulus depends on the density and configuration of the cuttings, and on the density, viscosity, and rheological characteristics of the drilling fluid. In directional drilling in particular, it is difficult to adjust and control the cuttings. In contrast to vertical drilling, it is very important to evaluate the flow characteristics of a drilling flow field. However, research on the transfer features of cuttings is inadequate. In this study, in order to identify transfer features of cuttings, an experiment was performed under wide-ranging conditions by constructing a slim hole annulus ($44mm{\times}30mm$) device. In this experiment, the particle volume fraction were influenced by particle size, particle concentration within the flow, pipe rotation, flow volume, and inclination of the annulus. In addition, a mathematical formula for volumetric concentration was deduced and compared to the test results and behavior of cuttings under the other drilling condition was made to be predicted. Therefore, this study can provide meaningful data for vertical and horizontal drilling, and for directional drilling.

Flickering Frequency and Pollutants Formation in Microwave Induced Diffusion Flames (마이크로파가 인가된 화염에서의 주파수 특성과 오염물질 생성)

  • Jeon, Young Hoon;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • The use of electromagnetic wave has been interested in various energy industry because it enhances a flame stability and provides higher safety environments. However it might increase the pollutant emissions such as NOx and soot, and have harmful influence on human and environments. Therefore, it is very important to understand interaction mechanism between flame and electromagnetic wave from environmental point of view. In this study, an experiment was performed with jet diffusion flames induced by electromagnetic wave. Microwave was used as representative electromagnetic wave and a flickering flame was introduced to simulate the more similar combustion condition to industry. The results show that the induced microwave enhances the flame stability and blowout limit. The unstable lifted flickering flames under low fuel/oxidizer velocity is changed to stable attached flames or lift-off flames when microwave applied to the flames, which results from the abundance of radical pool. However, NOx emission was increased monotonically with increasing the microwave power as microwave power increased up to 1.0 kW. The effects might be attributed to the heating of combustion field and thermal NOx mechanism will be prevailed. Soot particle was examined at the post flame region by TEM grid. The morphology of soot particle sampled in the microwave induced flames was similar to the incipient soot that is not agglomerated and contain a lots of liquid phase hydrocarbon such as PAH, which soot particle formed near reaction zone is oxidized on the extended yellow flame region and hence only unburned young particles are emitted on the post flame region.

An Experimental Study on Freezing Behavior of NaCl and Heavy Metal Aqueous Solution Using Freeze Concentration Method (동결농축법을 이용한 염수 및 중금속 수용액의 동결거동에 관한 실험 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • Recently, waste water treatment system is developed in small and middle size to get more economic advantage. Freeze concentration system has high thermodynamic efficiency and low energy consumption, can re-use purified water and cold energy obtained from ice. This study was experimentally performed to investigate pollution containment in frozen layer by cooling wall temperature, air-bubble flow methods, initial ice-lining thickness of frozen layer in NaCl aqueous solution and the representative heavy metals, Pb and Cr aqueous solution. As the result, a decrease in the cooling wall temperature bring a higher growth rate of ice front and the more solute was involved in frozen layer. The method to inject directly air-bubble into ice-liquid interface through ring shape nozzle gave high purity of ice compared to indirect method. Ice lining in 5mm thickness resulted in frozen layer with higher purity than 1mm thickness.

Evaluation of CO2 Removal Efficiency in Liquor plant by scrubber (스크러버를 이용한 주류공정 내 고농도 이산화탄소 제거효율 평가)

  • Park, Il Gun;Park, Yeong Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.986-994
    • /
    • 2017
  • In this paper, $CO_2$ absorption of scrubber was tested for removal of high concentration $CO_2$. Liquid to gas ratio($18L/m^3$) and Superficial velocity(0.14 m/s) was determined through Lab-scale test. As flow rates increase 1, 2, 3, 4 and $5m^3/min$, $CO_2$ removal efficiency decrease 98.47%, 96.46%, 92.95%, 89.71% and 85.49%. Also, the scrubber operation made energy improvement(5.4%), energy saving(11.5 TOE/year) and greenhouse gases reduction(6.5 TC/year).

An Experimental Study on Pressure Loss in Straight Cooling Channels (직선형 냉각채널에서의 압력손실에 대한 실험적 연구)

  • Yoon, Wonjae;Ahn, Kyubok;Kim, Hongjip
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.94-103
    • /
    • 2016
  • A regeneratively-cooled channel in a liquid rocket engine is used to effectively cool a combustion chamber inner wall from hot combustion gas, and the heat transfer/pressure loss characteristics should be predicted in advance to design cooling channels. In the present research, five cooling channels with different geometric dimensions were designed and the channels were respectively manufactured using cutter and endmill. By changing coolant velocity and downstream pressure, the effects of manufacturing method, channel shape, and flow condition on pressure losses were experimentally investigated and the results were compared with the analytical results. At same channel shape and flow condition, the pressure loss in the channel machined by the cutter was lower than that by the endmill. It was also found that the pressure loss ratio between the experimental result and the analytical data changed with the channel shape and flow condition.

Experimental Study on a Two-Stage Light-Gas Gun (2단 경가스총에 대한 실험적 연구)

  • Lee, Jung-Keun;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.10-15
    • /
    • 2010
  • Light gas guns have a large number of applications in various fields of engineering. A two-stage light-gas gun can produce an extremely high pressure in a very short interval of time. In general, the two-stage light-gas gun is made up of a high pressure tube, a compression tube and a launch tube, each stage being separated by diaphragms. This can be employed efficiently in the application of ultra-high pressure liquid jets. In the present study, experiments are carried out to investigate the projectile velocity and pressure behavior in the tubes according to the pressure changes at the frist diaphragm opening. In the present study result was found that the rupture pressure of the first diaphragm has a dominant influence on piston acceleration.

Casting Layout Design Using Flow & Solidification Analysis-Automotive Part(Oil Pan_BJ3E) (유동 및 응고해석을 이용한 주조방안설계-자동차용 부품(오일팬_BJ3E))

  • Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • In the modern industrial period, the introduction of mass production was most important progress in civilization. Die-casting process is one of main methods for mass production in the modern industry. The aluminum die-casting in the mold filling process is very complicated where flow momentum is the high velocity of the liquid metal. Actually, it is almost impossible in complex parts exactly to figure the mold filling performance out with the experimental knowledge. The aluminum die-castings are important processes in the automotive industry to produce the lightweight automobile bodies. Due to this condition, the simulation is going to be more critical role in the design procedure. Simulation can give the best solution of a casting system and also enhance the casting quality. The cost and time savings of the casting layout design are the most advantage of Computer Aided Engineering (CAE). Generally, the relations of casting conditions such as injection system, gate system, and cooling system should be considered when designing the casting layout. Due to the various relative matters of the above conditions, product defects such as defect extent and location are significantly difference. In this research by using the simulation software (AnyCasting), CAE simulation was conducted with three layout designs to find out the best alternative for the casting layout design of an automotive Oil Pan_BJ3E. In order to apply the simulation results into the production die-casting mold, they were analyzed and compared carefully. Internal porosities which are caused by air entrapments during the filling process were predicted and also the results of three models were compared with the modifications of the gate system and overflows. Internal porosities which are occurred during the solidification process are predicted with the solidification analysis. And also the results of the modified gate system are compared.

Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods (알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구)

  • Wonjoong Yoon;Jiyeon Lee;Jaehoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2024
  • In this study, an alkali metal Na was introduced into iron-based catalysts used in the carbon dioxide-based Fischer-Tropsch process by wet impregnation and physical mixing methods to compare their performance. The as-prepared catalysts were evaluated for reactivity at 3.5 MPa, 330 ℃, feed ratio of H2/CO2 = 3 with a space velocity of 4,000 mL h-1 gcat-1. Comparing the two catalysts, it was found that Na was uniformly distributed throughout the catalyst when wet-impregnated, but Na for physically mixed catalyst was relatively located on the surface of the catalyst. In addition, the wet-impregnated catalyst showed higher liquid hydrocarbon (C5+) yield and lower CO selectivity. In conclusion, the effect of Na distribution in the catalyst on the reaction was identified and can be controlled by the introduction method.