• Title/Summary/Keyword: Liquid tube

Search Result 541, Processing Time 0.024 seconds

Development of a 9as-liquid two-phase flowmeter using double orifice plates (2중판 오리피스를 이용한 기액 2상유량계의 개발)

  • 이상천;이상무;남상철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.619-629
    • /
    • 1998
  • An experimental work was conducted to investigate a feasibility of simultaneous measurement of gas-liquid two-phase flowrates with double orifice plates using air and water. The tests were carried out under the atmospheric pressure and at the ambient temperature using two different tube sizes. Qualities of an air-water flow in the present study have values less than 0.1 and thus the mixed flow showed bubbly, plug, slug flow regimes. The probability density function (PDF) and the power spectral density function (PSDF) of the instantaneous pressure drop traces for the flow regimes were obtained. It is found that some distinctive features exist in the distribution of these functions, depending upon the two-phase flow pattern. The time-averaged value of the instantaneous pressure drop increases with increasing gas and liquid flowrates, showing a single-valued function for the total mass flowrate and the quality. It is also found that the two-phase discharge coefficient exhibits a consistent trend for variation of dimensionless parameters such as the superficial velocity ratio and the gas Reynolds number. The results indicate that simultaneous measurement of two-phase flowrate may be possible based upon a statistical analysis of the instantaneous pressure drop curves monitored using double orifice plates.

  • PDF

Development and Analysis of the Highly Efficient Support System in a Liquid Hydrogen Vessel (액체수소 저장탱크용 고효율 지지 시스템 개발 및 해석)

  • Yun, Sang-Kook;Park, Dong-Heun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • Probably the most significant heat transfer in the cryogenic liquid hydrogen storage tank from the atmosphere may occur through its support system. In this paper the efficient support system for the cryogenic storage vessel was newly developed and analysed. The support system was composed of a spherical ball as a supporter to reduce the contact area. which is located between two supporting SUS tubes inserted SUS and PTFE blocks. Numerical analyses for temperature distribution, and the thermal stress and strain of the support system were performed by the commercial codes FLUENT and ANSYS. The heat transfer rate of the supporter was evaluated by the thermal boundary potential method which can consider the variation of thermal conductivity with temperature. The results showed that the heat transfer rate through the developed supporter compared with the common SUS tube supporter was significantly reduced. The thermal stress and strain were obtained well below the limited values. It was found that the developed supporter can be one of the most efficient support systems for cryogenic liquid storage vessel.

Atomizing Characteristics of Coaxial Porous Injectors (다공성재를 이용한 동축형 분사기의 미립화특성)

  • Kim, Do-Hun;Shin, Jeung-Hwan;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.1
    • /
    • pp.35-44
    • /
    • 2012
  • To improve the mixing and atomizing performance at the center region of the conventional coaxial shear injector spray, the concept of a coaxial porous injector was invented. This novel injection concept for liquid rocket engines utilizes the Taylor-Culick flow in the cylindrical porous tube. The 2-dimensional injector, which can be converted in three injection configurations, was fabricated, and several cold flow tests using water-air simulant propellant was performed. The hydraulic characteristics and the effects of a gas flow condition on the spray pattern and the Sauter mean diameter (SMD) was analyzed for each configuration. The atomizing mechanism of coaxial porous injector was different with the coaxial shear injector, and it was explained by the momentum of the gas jet, which is injected normally against the center liquid column, and by the secondary disintegration at the wavy interface of liquid jet, which was generated at the recessed region. The SMD of 2D coaxial porous injector, which has higher gas momentum, was measured and it shows better atomizing performance at the center and outer side of spray than the 2D coaxial shear injector.

Economic Analysis Program Development for Assessment of Hydrogen Production, Storage/Delivery, and Utilization Technologies (수소 전주기 경제성 분석 프로그램 개발)

  • SUHYUN KIM;YOUNGDON YOO;HYEMIN PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.607-615
    • /
    • 2022
  • In this study, economic analysis program was developed for economic evaluation of hydrogen production, storage/delivery, and utilization technologies as well as overseas import of hydrogen. Economic analysis program can be used for the estimation of the levelized cost of hydrogen for hydrogen supply chain technologies. This program include five hydrogen production technology on steam methane reforming and water electrolysis, two hydrogen storage technologies (high compressed gas and liquid hydrogen storage), three hydrogen delivery technologies (compressed gas delivery using tube trailer, liquid hydrogen, and pipeline transportation) and six hydrogen utilization technologies on hydrogen refueling station and stationary fuel cell system. In the case of overseas import hydrogen, it was considered to be imported from five countries (Austraila, Chile, India, Morocco, and UAE), and the transportation methods was based on liquid hydrogen, ammonia, and liquid organic hydrogen carrier. Economic analysis program that was developed in this study can be expected to utilize for planning a detailed implementation methods and hydrogen supply strategies for the hydrogen economy road map of government.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube (다공성 세라믹관내에서 생성되는 수중 유전체 장벽 방전 플라즈마를 이용한 아나톡신-a의 분해)

  • JO, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.2
    • /
    • pp.167-177
    • /
    • 2016
  • This work investigated the decomposition of aqueous anatoxin-a originated from cyanobacteria using an underwater dielectric barrier discharge plasma system based on a porous ceramic tube and an alternating current (AC) high voltage. Plasmatic gas generated inside the porous ceramic tube was uniformly dispersed in the form of numerous bubbles into the aqueous solution through the micro-pores of the ceramic tube, which allowed an effective contact between the plasmatic gas and the aqueous anatoxin-a solution. Effect of applied voltage, treatment time and the coexistence of nutrients such as $NO_3{^-}$, $H_2PO_4{^-}$ and glucose on the decomposition of anatoxin-a was examined. Chemical analyses of the plasma-treated anatoxin-a solution using liquid chromatography-mass spectrometry (LC-MS) and ion chromatography (IC) were performed to elucidate the mineralization mechanisms. Increasing the voltage improved the anatoxin-a decomposition efficiency due to the increased discharge power, but the energy required to remove a given amount of anatoxin-a was similar, regardless of the voltage. At an applied voltage of 17.2 kV (oxygen flow rate: $1.0L\;min^{-1}$), anatoxin-a at an initial concentration of $1mg\;L^{-1}$ (volume: 0.5 L) was successfully treated within 3 min. The chemical analyses using LC-MS and IC suggested that the intermediates with molecular weights of 123~161 produced by the attack of plasma-induced reactive species on anatoxin-a molecule were further oxidized to stable compounds such as acetic acid, formic acid and oxalic acid.

A Study of Ice-Formation Phenomena on Freezing of Flowing Water in a Stenotic Tube

  • Suh, Jeong-Se;Kim, Moo-Geun;Ro, Sung-Tack;Yim, Chang-Soon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.1-10
    • /
    • 1999
  • In this study, a numerical analysis is made on the ice-formation for laminar water flow inside a stenotic tube. The study takes into account the interaction between the laminar flow and the stenotic port in the circular tube. The purpose of the present numerical investigation is to assess the effect of a stenotic shape on the instantaneous shape of the flow passage during freezing upstream/downstream of the stenotic channel. In the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the solid and liquid regions are resolved. In a channel flow between parallel plates, the agreement between the of predictions and the available experimental data is very good. Numerical analyses are performed for parametric variations of the position and heights of stenotic shape and flow rate. The results show that the stenotic shape has the great effect on the thickness of the solidification layer inside the tube. As the height of a stenosis grows and the length of a stenosis decreases, the ice layer thickness near the stenotic port is thinner, due to backward flow caused by the sudden expansion of a water tunnel. It is found that the flow passage has a slight uniform taper up to the stenotic channel, at which a sudden expansion is observed. It is also shown that the ice layer becomes more fat in accordance with its Reynolds number.

  • PDF

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Numerical and experimental studies of cryogenic reciprocating expander without inner piston

  • Park, Sehyeon;Bae, Junhyuk;Kim, Kyoungjoong;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.3
    • /
    • pp.21-27
    • /
    • 2018
  • It is difficult to fabricate and maintain moving parts of expander at cryogenic temperature. This paper describes numerical analysis and experimental investigation on a cryogenic reciprocating expander without moving piston. An intake valve which takes high-pressure gas, and an exhaust valve which discharges low-pressure gas, are connected to a tube. The inside pressure of the tube is pulsated for work production. This geometric configuration is similar to that of pulse tube refrigerator but without regenerator. An orifice valve and a reservoir are installed to control the phase of the mass flow and the pressure. At the warm end, a heat exchanger rejects the heat which is converted from the produced work of the expanded gas. For the numerical analysis, mass conservation, energy conservation, and local mass function for valves are used as the governing equations. Before performing cryogenic experiments, we carried out the expander test at room temperature and compared the performance results with the numerical results. For cryogenic experiments, the gas is pre-cooled by liquid nitrogen, and then it enters the pulse tube expander. The experiments are controlled by the opening of the orifice valve. Numerical analysis also found the expander conditions that optimize the expander performance by changing the intake pressure and valve timing as well as the opening of the orifice valve. This paper discusses the experimental data and the numerical analysis results to understand the fundamental behavior of such a newly developed non-mechanical expander and elucidate its potential feature for cryogenic application.

Permeation Characteristics of the Tubular Membrane Module Equipped wtih the Air Injection Nozzle Tube (공기주입 노즐관이 장착된 관형막의 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • The air injection nozzle tube was inserted inside of the tubular membrane module to reduce membrane fouling and improve the permeate flux. The average pore size of membrane was $0.1\;{\mu}m$ and the yeast was used as a foulant. All of permeate experiments were started without air injection for the module equipped with the nozzle tube, then carried out continuously with air injection. Finally, the nozzle tube was removed from the module and the permeate was measured without air injection. The measured permeate fluxes were compared to examine the effect of air injection. The fluxes for air injection were consistently maintained or increased. The fluxes of no-air injection with the nozzle tube were greater than those of the empty tubular module. As operating pressure decreased to 0.4 bar, the flux enhancement of air injection based on no-nozzle case increased to 21%. Flux enhancements of air injection were above 30% as the gas/liquid two-phase flow was changed from the stratified-smooth to the intermittent pattern due to increase of gas flowrate.