• Title/Summary/Keyword: Liquid transfer

Search Result 1,338, Processing Time 0.025 seconds

Evaporative Modeling in n Thin Film Region of Micro-Channel (마이크로 채널내 박막영역에서의 증발 모델링)

  • Park, Kyoung-Woo;Noh, Kwan-Joong;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • A mathematical model of the hydrodynamic and heat transfer performances of two-phase flow (gas-liquid) in thin film region of micro channel is proposed. For the formulation of modeling, the flow of the vapor phase and the shear stress at the liquid-vapor interface are considered. In this work, disjoining pressure and capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted also. Using the model, the effects of the variations of channel height and heat flux on the flow and heat transfer characteristics are investigated. Results show that the influence of variation of vapor pressure on the liquid film flow is not negligible. The heat flux in thin-film region is the most important operation factor of micro cooler system.

Measurement of Heat Transfer Coefficient in Dimpled Channel: Effect of Dimple Arrangement and Channel Height

  • Lee, K.S.;Shin, S.M.;Park, S.D.;Kwak, J.S.;Kang, J.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.39-44
    • /
    • 2008
  • In this paper, heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated and the diameter and depth of dimple was 16mm and 4mm, respectively. Two channel heights of about 0.6 and 1.2 time of the dimple diameter, two dimple configuration were tested. The Reynolds numbers based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With same dimple arrangement, the heat transfer coefficients and the thermal performance factor were higher for the lower channel height. As the distance between dimples became smaller, the overall heat transfer coefficient and the thermal performance factor were increased.

  • PDF

A Study on the Heat Transfer Characteristics and Performance of the High Temperature Range Heater Plate Using Liquid-Vapor Phase Change Heat Transfer (기-액 상변화 열전달식 고온 히터 플레이트의 작동 특성과 성능에 관한 연구)

  • Kang, Hwan-Kook;Yim, Kwang-Bin
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.6
    • /
    • pp.283-289
    • /
    • 2013
  • The experimental study for the temperature uniformity on the wafer using liquid-vapor phase heat transfer mechanism is performed. For the experiment, the heater plate which is consist of stainless steel container, working fluid and electrical heater is designed, manufactured and tested at the range of 600 to $850^{\circ}C$. The results showed that the phase change type heater plate was much more uniform and stable temperature on the heater plate surface and wafer than the uniform heat flux type heater plate at the atmospheric condition. Also, the results of 300 mm outer diameter of heater plate showed that the same temperature uniformity compared with 230 mm.

Development of Performance Test Apparatus and Design Program of Liquid-Phase Plate Heat Exchanger (액상 판형열교환기 성능실험장비 및 설계프로그램 개발)

  • Park, Sang-Il;Song, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1306-1311
    • /
    • 2004
  • The performance test apparatus of liquid-phase plate heat exchanger was installed and the computer program for design was developed in this study. The detail temperature distribution of hot and cold fluids in each path of heat exchanger was calculated by numerical method and the correlation for the heat transfer coefficient was defined. The heat transfer coefficients were measured using the working fluids of water and glycerine to investigate the effect of fluid viscosity. The measured heat transfer coefficients were compared with the calculated values obtained from the computer program and it was shown that error of the calculated values was generally less than 5%.

  • PDF

Intake Valve Temperature Effect on the Mixture Preparation in a SI Engine During Warm-up

  • 신영기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.51-66
    • /
    • 1997
  • A heat transfer model of the intake valve in a spark ignition engine is presented, which is calibrated with a number of the valve temperature profiles measured during engine warm-up for the gaseous fuel(propane). The valve is divided into four identical elements for which the assumption of lumped thermal mass is applied. The calibration is made so that the difference between the measued and simulated valve temperatures becomes minimal. Then the model is applied to the cases of the liquid fuel(indolene) to estimate the amount of the liquid fuel vaporized from the intake valve by assuming that fuel evaporation accounts for the deficit of the heat balance budget. The results of the model show quantitative contribution of each heat transfer source to the heat balance. The behavior of the calculated mass fraction of the fuel vaporized from the intake valve explains how the liquid fuel evaporate during engine warm-up. The mass fraction at warmed-up condition is closely related with the fraction directly targeted on the valve back by the fuel spray geometry.

  • PDF

RADIATION EFFECTS ON MHD BOUNDARY LAYER FLOW OF LIQUID METAL OVER A POROUS STRETCHING SURFACE IN POROUS MEDIUM WITH HEAT GENERATION

  • Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.1
    • /
    • pp.83-102
    • /
    • 2015
  • The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.

A Numerical Analysis of cleat and Mass Transfer on the Dehumidifier of Liquid Desiccant Cooling System (액체 건조제 냉각장치의 제습기에서 열 및 물질전달 수치해석)

  • Go, Gwang-Ho;O, Myeong-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1756-1765
    • /
    • 2001
  • The heat and mass transfer process between the falling liquid desiccant(TEG) film and the air in counter flow at the dehumidifier of desiccant cooling system were investigated. The governing equations with appropriate boundary and interfacial conditions describing the physical problems were solved by numerical analysis. As a result, the effects of the design parameters and the outside air conditions on the rates of dehumidification and sensible cooling were discussed. The results of the dehumidification and sensible cooling rates were compared with those of the cross flow at the same conditions.

The Influence of Variable Thermophysical Properties for Filmwise Condensation of Superheated Vapor on a Vertical Wall (수직 벽에서 과열증기의 막응축에 대한 열물성의 영향)

  • 김경훈;성현찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A theoretical model for laminar filmwise condensation along an isothermal vertical wall at constant pressure has been formulated on the basis of conservation laws and other fundamental physical principles. The model was applied to the prediction of the influences of variable thermophysical properties of liquid and vapor layers in the filmwise condensation of superheated vapor of Rl2, R134a, R142b and R152a. The dimensionless velocity component method was employed in the transformation of the governing equations and their boundary conditions, and the polynomial method was used for treating variable thermophysical properties of liquid and vapor. Physical quantities, such as the dimensionless thickness of the liquid layer, local heat transfer rate and mean heat transfer coefficient, were investigated for different values of the superheated temperature of the stagnant vapor far from the wall. It was found that the value of mean heat transfer coefficient of R134a was higher than other refrigerants for the change of the superheated temperature.

  • PDF

Pressure Loss and Heat Transfer Characteristics of the Glass Beads-Water Flow in a Vertical Tube (수직관내 유리알-물 유동의 압력손실 및 열전달 성능)

  • Kim, N.H.;Kim, J.S.;Lee, Y.P.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.550-560
    • /
    • 1996
  • Recently, fluidized bed heat exchangers with circulating liquid are widely used in a number of places-chemical, process, food concentration, waste water treatment facilities, etc. In a circulating heat exchanger, solid particles circulate with the liquid, thereby increase the heat transfer and reduce the fouling potential of the heat exchanger. In this study, glass beads were circulated through a vertical tube. The pressure loss and the heat transfer coefficient were measured. At low flow velocities, glass beads enhanced the heat transfer considerably. The enhancement increased as the volume fraction of the glass beads increased. The pressure loss showed a similar trend. From the observed particle behavior near tube wall, a possible explanation of the trend is provided.

  • PDF

Approximate Solution for Conjugate Heat Transfer of Laminar Film Condensation on a Flat Plate (평판의 층류 막응축에서 복합열전달에 대한 근사해)

  • Lee Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.509-518
    • /
    • 2005
  • Liquid film thickness in laminar film condensation for flow over a flat plate generally is so thin that both fluid acceleration and thermal convection within the liquid film can be neglected. An integral solution method is proposed to solve the conjugate problems of laminar film condensation and heat conduction in a solid wall. It is found that approximate solutions of the governing equations involve four physical parameters to describe the conjugate heat transfer problem for laminar film condensation. It is shown that the effects of interfacial shear. mass transfer and local heat transfer are strongly dependent on the thermo-physical properties of the working fluids and the Jacob number.