• Title/Summary/Keyword: Liquid simulation

Search Result 979, Processing Time 0.029 seconds

Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment (레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석)

  • Kim H.I.;Kim W.Y.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF

Optical Design of Light Guide Plate Material for Slim Liquid Crystal Display (박형 디스플레이를 위한 도광판의 광학설계)

  • Gong, Taewon;Choi, Gyu Jin;Kwon, Jin Hyuk;Park, In Shik;Lee, Sunmook;Woo, DongJin;Gwag, Jin Seog
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.233-238
    • /
    • 2014
  • In this paper, in order to achieve slim and light liquid crystal display, we examine the optical conditions that can obtain uniform light with higher optical efficiency over whole light guide plate (LGP) through simulation. Furthermore, to overcome the issues of hot spot in front of red, green, and blue light emitting diodes (RGB LEDs) source and non-uniform color mixing, we propose four shaped color mixing bars tied up with the LGP and check the optical characteristics of the LGP with them by simulation. Consequently, we could know the optical conditions of improving optical efficiency and optical uniformity in the LGP through the optical design. Also we confirmed that the issues of the hot spot and non-uniform color mixing in edge type LED could be solved by using the ${\bigwedge}$-shaped window color mixing bar.

Equilibrium and Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Argon

  • Chang Bae Moon;Gyeong Keun Moon;Song Hi Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.309-315
    • /
    • 1991
  • The thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity-of liquid argon at 94.4 K and 1 atm are calculated by non-equilibrium molecular dynamics (NEMD) simulations of a Lennard-Jones potential and compared with those obtained from Green-Kubo relations using equilibrium molecular dynamics (EMD) simulations and with experimental data. The time-correlation functions-the velocity, pressure, and heat flux auto-correlation functions-of liquid argon obtained from the EMD simulations show well-behaved smooth curves which are not oscillating and decaying fast around 1.5 ps. The calculated self-diffusion coefficient from our NEMD simulation is found to be approximately 40% higher than the experimental result. The Lagrange extrapolated shear viscosity is in good agreement with the experimental result and the asymptotic formula of the calculated shear viscosities seems to be an exponential form rather than the square-root form predicted by other NEMD studies of shear viscosity. The agreement for thermal conductivity between the simulation results (NEMD and EMD) and the experimental result is within statistical error. In conclusion, through our NEMD and EMD simulations, the overall agreement is quite good, which means that the Green-Kubo relations and the NEMD algorithms of thermal transport coefficients for simple liquids are valid.

Novel ANFIS based SMC with Fractional Order PID Controller for Non Linear Interacting Coupled Spherical Tank System for Level Process

  • Jegatheesh A;Agees Kumar C
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.169-177
    • /
    • 2024
  • Interacting Spherical tank has maximum storage capacity is broadly utilized in industries because of its high storage capacity. This two tank level system has the nonlinear characteristics due to its varying surface area of cross section of tank. The challenging tasks in industries is to manage the flow rate of liquid. This proposed work plays a major role in controlling the liquid level in avoidance of time delay and error. Several researchers studied and investigated about reducing the nonlinearity problem and their approaches do not provide better result. Different types of controllers with various techniques are implemented by the proposed system. Intelligent Adaptive Neuro Fuzzy Inference System (ANFIS) based Sliding Mode Controller (SMC) with Fractional order PID controller is a novel technique which is developed for a liquid level control in a interacting spherical tank system to avoid the external disturbances perform better result in terms of rise time, settling time and overshoot reduction. The performance of the proposed system is obtained by analyzing the simulation result obtained from the controller. The simulation results are obtained with the help of FOMCON toolbox with MATLAB 2018. Finally, the performance of the conventional controller (FOPID, PID-SMC) and proposed ANFIS based SMC-FOPID controllers are compared and analyzed the performance indices.

Monte Carlo Simulation of $SiO_2$ Systems ($SiO_2$계의 Monte Carlo 시뮬레이션)

  • 이종무
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.47-54
    • /
    • 1986
  • The structures of crystalline vitreous and liquid $SiO_2$ were Monte carlo simulated employing the potential energy function comprising Lennard-Jones 2-body and Axilrod-Teller 3-body potentials. Although the Si-O-Si angular distribution functions obtained in the simulation appear to be higher than the experimental results the other simulation results including SiO, O-O and Si-Si radial distribution functions and O-Si-O anglular distribution functions agree well with experimental data within acceptable limits. Themost important outcome in this study is that various $SiO_2$forms were successfully reproduced with the same potential energy function.

  • PDF

Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives (기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

Simulations of Gate Driving Schemes for Large Size, High Quality TFT-LCD (대면적 고화질 TFT-LCD용 게이트 Driving에 관한 Simulation)

  • Jung, Soon-Shin;Yun, Young-Jun;Kim, Tae-Hyung;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1809-1811
    • /
    • 1999
  • In recent years, attempts have been made to greatly improve the display quality of active-matrix liquid crystal display devices, and many techniques have been proposed to solve such problems as gate delay, feed-through voltage and image sticking. Gate delay is one of the biggest limiting factors for large-screen-size, high-resolution thin-film transistor liquid crystal display (TFT/LCD) design. Many driving method proposed for TFT/LCD progress. Thus we developed gate driving signal generator. Since Pixel-Design Array Simulation Tool (PDAST) can simulate the gate, data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the driving signals of gate lines on the pixel operations can be effectively analyzed.

  • PDF

Analytical and Experimental studies on Dielectric Characteristics of High Voltage Superconducting Machines in Liquid Nitrogen (액체질소를 사용하는 초전도 고전압 전력기기의 절연 특성 연구)

  • Na, J.B.;Ko, T.K.;Kang, H.;Seok, B.Y.;Kim, T.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.1
    • /
    • pp.46-50
    • /
    • 2011
  • The electrical insulation design of high voltage superconducting fault current limiters (SFCLs) should be confirmed to be applied for the stabilization of the power grid. This paper describes numerical analysis and AC dielectric experiments for developing high voltage SFCLs. The electric field distributions between applied high voltage part and ground were calculated by finite element method (FEM) simulation tool and AC criterion of liquid nitrogen at 200 kPa was calculated from correlation between the field utilization factor and FEM simulation results. This paper deals with ceonceptual insulation design of a 154 kV class single-phase no-inductively wound solenoid type SFCL which was focused on gap distance between the cryostat and superconducting coils. Furthermore, the shield ring effect was confirmed to reduce maximum electric field at applied high voltage part.

TWO DIMENSIONAL SIMULATION OF UNSTEADY CAVITATING FLOW IN A CASCADE

  • Kajishima T.;Ohta T.;Shin B. R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.179-182
    • /
    • 2005
  • We have developed a numerical scheme to reproduce the unsteady flows with cavitation by the finite-difference method. The evolution of cavitation is represented by the source/sink of vapor phase in the incompressible liquid flow. The pressure-velocity coupling is based on the fractional-step method for incompressible fluid flows, in which the compressibility is taken into account through the low Mach number assumption. We applied our method for the cavitating flows in a two-dimensional cascade, which approximates the portion near the tip of inducer in liquid-fuel engine. Particular attention was focused on the influence of turbulence model in this report. Using an eddy viscosity model, although it was not an optimized one for our purpose, the agreement with the experimental observation was improved.

  • PDF

Optical Simulation of Multicolor Cholesteric Liquid Crystal Displays Using Finite-Difference Time- Domain (FDTD) Method

  • Ding, J.M.;Ting, C.L.;Lin, Y.R.;Chen, R.D.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1142-1145
    • /
    • 2006
  • The Finite-difference time-domain (FDTD) method is used to directly solve Maxwell's equations, and the techniques required for optical simulation of Bragg reflections of cholesteric liquid crystal (ChLC) displays are introduced in this paper. The simulated results show that the color gamut of a ChLC display can be broadened by using of a circular polarizer on top surface of the ChLC film, and are examined by experiments.

  • PDF