• Title/Summary/Keyword: Liquid sensor

Search Result 316, Processing Time 0.026 seconds

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung;Han, Dong-Kwan;Hong, SeungBo;Jeong, Bo Ra;Park, Bok-Seong;Han, Sang-Do;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.294-301
    • /
    • 2019
  • The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Study on the Ceramics Magnetic Sensor Fabrication Technology (세라믹 자성 센서 제조기술에 관한 연구)

  • Lee, Sang-Heon;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.61-65
    • /
    • 2003
  • A magnetic field sensor is fabricated with superconducting ceramics system The prepared material shows the superconductivity at about 95K. The sensor at liquid nitrogen temperature shows the increase in electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor is changed from zero to a value more than $100{\mu}V$ by the applied magnetic field. The change in electrical resistance depends on magnetic field. The sensitivity of this sensor is 2.9 ohm/T. The increase in electrical resistance by the magnetic field is ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material.

  • PDF

A Study on the development of developer for positive type presensitized off-set plates (포지용 오프셋 PS판의 현상액 개발)

  • 오세웅
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1998
  • Recently the study of the application of liquid crystal in industrial fields has developed rapidly. It is well known that the encapsulated liquid crystal is advantageous than raw liquid crystal for protection of surface pollution. This paper describes a new class of thermal sensor. It is that the liquid crystal polymer composite(LCPC) films consisting of a continuous LC phase embedded in a three-dimensional network of polymer matrix are formed by photopolymerization-induced phase separation. In this works, it has been demonstrated that consiste of a 8:2 mixture of chiral nematic liquid crystal and HX-620 has the greatest domain and it was best discoloration.

  • PDF

Development and Applications of New Thermochromism Inks used Chiral Nematic Liquid Crystal-UV Curing Resin (키랄네마틱 液晶-UV경화형 수지를 이용한 새로운 온도변색성 잉크의 개발 및 응용)

  • 김준곤;남수용;구철회;윤종태;심성보
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.113-124
    • /
    • 2000
  • It is well known that the characteristics of liquid crystal polymer composite(LCPC) films are possessed of large-area and flexible display, polarizer free, high contrast, wide angle of visual filed and high responsiveness. In this study, we have investigated to the best optimal mixing rates chiral nematic liquid crystals and UV-curable resins having different properties acrylate moleculars. The purpose of this study has been the development of new functional application with liquid crystal polymer composite films. For example the films were applied a new thermal sensor. In results, best phase separation behaviors turned out liquid crystal/monomer/oilgomer mixture system.

  • PDF

Quantification of Oxygen Transfer in Test Tubes by Integrated Optical Sensing

  • Wittmann, Christoph;Schutz, Verena;John, Gernot;Heinzle, Elmar
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.991-995
    • /
    • 2004
  • Immobilized sensor spots were applied for online measurement of dissolved $O_2$, in test tubes. Oxygen transport was quantified at varied shaking frequency and filling volumes. The k$_{L}$ a increased with increasing shaking frequency and decreasing filling volume. In non-baffled tubes the maximum $k_{L}a$ value was $70h^{-1}$, equivalent to a maximum $O_2$ transfer capacity of 15mMh^{-1}$. Monitoring of the hydrodynamic profile revealed that the liquid bulk rotated inside the tube with an inclined liquid surface, whereby the angle between the surface and tube wall increased with increasing shaking frequency. The $k_{L}a$ clearly correlated to the surface area. Placement of four baffles into the tubes improved the oxygen transfer up to 3-fold. The highest increase in $k_{L}a$ was observed at high filling volume and high shaking frequency. The maximum $k_{L}a$ in baffled tubes was $100 h^{-1}$.

Study on 2 types of Liquid Lens control system used for the autofocus (자동초점에 사용되는 두 가지 Liquid Lens제어에 관한 연구)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1493-1498
    • /
    • 2015
  • The autofocus system is automatically to drive the focus. It is very important to computer vision system. In the case of a compact camera, the actuator technology is used for auto-focus in mass production. the position sensor is required, the circuit configuration and easy method is widely used in VCM, compared to the stability of the drive size and the noise is a big stepping motor type, size has a piezo system having a humidity problem and the small leaded vulnerability. In addition, there is a liquid lens system, the advantages of low power in a compact structure but also a structure with proven quality and reliability and features required pressure. In this paper, we implement two control systems that can control the actuator as a liquid range of VCM using a sharpness of the image acquired by the image sensor automatically initiates 5Mpixel class was the implementation verification of focusing.

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor (힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구)

  • Jaehyun, Lee;Gyuhan, Bae;Youngmin, Ki;Seoksu, Moon
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

Fluid-structure interaction analysis of micromechanical resonance sensor (마이크로기계 공진 센서의 유체-구조물 상호 작용 해석)

  • Kang, In-Goo;Shin, Yoon-Hyuk;Yim, Hong-Jae;Lim, Si-Hyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.309-313
    • /
    • 2009
  • A micromechanical resonance sensor detects the resonance frequency shift due to mass or adsorption induced surface stress change during molecular adsorption or interaction on its surface. The resonance sensor is surrounded by gas or liquid solution during operation. To study the resonance shift phenomena depending on its surrounding environment, fluid-structure interaction of the resonance sensor has been analyzed for the different fluid environment and boundary conditions using finite element analysis.

  • PDF

Development of the Smart Concrete Using Electric Resistance (전기 저항을 이용한 스마트 콘크리트의 개발)

  • 김화중;김이성;김형준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.447-453
    • /
    • 2004
  • Various structural materials have been used in construction projects using stones, connotes, and steels materials. Among of these projects, concretes may use widely because concretes have high compressive strength, and comparatively easy maintenance and management. Reinforced concrete Buildings will be deteriorated as time passed. These problems will be accelerated by propagation of cracks. In order to manage such cracks, time, efforts and expense are required. In this study, leakages of fluorescence and adhesive material were investigated using glass sensors that were embedded in a model beam and column. In addition, currents in glass pipe sensor were observed to find leakage of liquid in glass pipes. Progressive cracks were generated by fracture of glass me sensor. In this investigation, a reinforcement clothing system was wrapped for a glass pipe sensor, The glass pipe sensor that can make control and reinforce cracks simultaneously.

  • PDF