• Title/Summary/Keyword: Liquid phase plasma

Search Result 174, Processing Time 0.027 seconds

Changing PEO coating formation on Mg alloys by particle additions to the treatment electrolyte

  • Blawert, Carsten;Srinivasan, Bala;Liang, Jun;Huang, Yuanding;Hoche, Daniel;Scharnagl, Nico;Heitmann, Volker;Burmester, Ulrich
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.7-11
    • /
    • 2012
  • Plasma electrolytic oxidation of magnesium alloys is a well known technique to produce corrosion and wear resistant coatings. The addition of particles to the electrolyte provides a possibility to produce coatings with an increasing range of composition by in-situ incorporation of those particles into the coating. An extensive literature review has revealed that the mode of incorporation depends mainly on the melting point of the used particles and the energy provided by the discharges of the PEO process. The spectrum ranges from inert to partly reactive incorporation, but a complete reactive incorporation and a formation of a new single phase coating was not observed so far. Thus a new approach in PEO processing is introduced using specific particles as a kind of sintering additive, changing not only the composition but lowering the melting temperature and increase the liquid phase fraction during the discharges, resulting in a new amorphous coating.

  • PDF

Synthesis and Analysis of Zn Nanopowders by Wire Explosion In Liquids (액중 전기폭발법을 이용한 아연 나노분말 제조 및 분석)

  • Cho, Chu-Hyun;Kim, Doo-Hun;Choi, Si-Young;Kang, Chung-Il;Moon, Gap-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.824-829
    • /
    • 2012
  • Zn wires have been electrically exploded in methanol or distilled water using the pulsed power technologies. The nanopowders produced by the explosions have been observed by using SEM and TEM, and analyzed its phase by using EDS and XRD. The nanopowders produced in distilled water showed ZnO phase only. On the other hands, the nanopowder produced in methanol showed mixed phases with Zn and ZnO. The HR-TEM images of the nanopowders produced in methanol showed that the some particles have been coated with carbon like materials. It is considered that the carbon coatings could be depended on the positions of the particles during the plasma state formed by explosion.

Development of Membrane Strip Assay System for Lipoprotein Cholesterol Based on Liquid-Phase Enzyme Reactions (액상 효소반응을 이용한 Membrane Strip 형 Cholesterol 측정시스템의 개발)

  • 신인수;목락선;장미라;백세환
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.577-584
    • /
    • 1998
  • A sensitive membrane strip assay for plasma lipoprotein cholesterol that can be performed without handling reagents has been investigated. We previously developed an assay system with immobilized enzymes (cholesterol esterase and cholesterol oxidase) on the surfaces of nitrocellulose membrane(1). In such a case, the amount of enzymes present on the membrane was limited by its surface area and, thus, the detection capability was relatively poor (> 50 mg/dL cholesterol). To overcome this problem, we devised a new system with non-immobilized enzymes by placing them within interstitial spaces of a celullose membrane pad in a dry state. Upon contact with sample medium, the enzymes were immediately dissolved and participated in the reactions with cholesterol in a liquid phase. We constructed a user-friendly system consisting of four membrane pads fro sample application, cholesterol decomposition, color development as signal, and medium absorption to invoke a continuous flow (sequential location from the bottom). A sample containing lipoproteins was added into the application pad by capillary action and transferred to the next pad for decomposition. The decomposition pad (namely, enzyme pad) contained a detergent (sodium cholate) for the destruction of lipoprotein particles, the two enzymes for cholesterol decomposition, and a chromogen (3,3'-diaminobenzidine). As a consequence of the enzyme reactions, hydrogen peroxide was produced, and then reacted in the presence of the chromogen with horseradish peroxidase immobilized on the signal generation pad. Finally, a colorimetric signal directly proportional to the cholesterol concentration was produced. The detection limit determined from this system under optimal conditions was at least 2 times lower than of the enzyme-immobilized system.

  • PDF

Quantification of Entacapone in Human Plasma by HPLC Coupled to ESI-MS/MS Detection: Application to Bioequavalence Study (체외에서 ESI-MS/MS 탐지에 연결된 HPLC에 의한 Entacapon의 수량화: 생물학적 동등성 연구에 적용)

  • Balasekhara Reddy., Ch.;Baburao., Ch.;Chandrasekhar., K.B.;Kanchanamala., K.;RihanaParveen., S.K.;Ravikumar., Konda
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.523-532
    • /
    • 2010
  • The proposed method is simple, sensitive and specific Liquid chromatography-tandem mass spectrometry (LCESI-MS/MS) method for the quantification of Entacapone (EA) in human plasma using Entacapone-d10 (EAD10) as an internal standard (IS). Chromatographic separation was performed on Zorbax SB-C18, $2.1{\times}50\;mm$, $5\;{\mu}m$ column, mobile phase composed of 10 mM Ammonium formate (pH 3.0): Acetonitrile (60:40 v/v), with a flow-rate of 0.7 mL/min, followed by Liquid-liquid extraction. EA and EAD10 were detected with proton adducts at m/z $306.1{\rightarrow}233.1$ and $316.3{\rightarrow}233.0$ in multiple reaction monitoring (MRM) positive mode respectively. The method was validated over a linear concentration range of 1.00 - 2000.00 ng/mL with correlation coefficient ($r^2$) $\geq$ 0.9993. Intra and inter-day Precision within 3.60 to 7.30 and 4.20 to 5.50% and Accuracy within 97.30 to 104.20 and 98.30 to 105.80% proved for EA. This method is successfully applied in the bioequivalence study of healthy Indian human volunteers.

A Novel Approach for Controlling Process Uniformity with a Large Area VHF Source for Solar Applications

  • Tanaka, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.146-147
    • /
    • 2011
  • Processing a large area substrate for liquid crystal display (LCD) or solar panel applications in a capacitively coupled plasma (CCP) reactor is becoming increasingly challenging because of the size of the substrate size is no longer negligible compared to the wavelength of the applied radio frequency (RF) power. The situation is even worse when the driving frequency is increased to the Very High Frequency (VHF) range. When the substrate size is still smaller than 1/8 of the wavelength, one can obtain reasonably uniform process results by utilizing with methods such as tailoring the precursor gas distribution by adjustingthrough shower head hole distribution or hole size modification, locally adjusting the distance between the substrate and the electrode, and shaping shower head holes to modulate the hollow cathode effect modifying theand plasma density distribution by shaping shower head holes to adjust the follow cathode effect. At higher frequencies, such as 40 MHz for Gen 8.5 (2.2 m${\times}$2.6 m substrate), these methods are not effective, because the substrate is large enough that first node of the standing wave appears within the substrate. In such a case, the plasma discharge cannot be sustained at the node and results in an extremely non-uniform process. At Applied Materials, we have studied several methods of modifying the standing wave pattern to adjusting improve process non-uniformity for a Gen 8.5 size CCP reactor operating in the VHF range. First, we used magnetic materials (ferrite) to modify wave propagation. We placed ferrite blocks along two opposing edges of the powered electrode. This changes the boundary condition for electro-magnetic waves, and as a result, the standing wave pattern is significantly stretched towards the ferrite lined edges. In conjunction with a phase modulation technique, we have seen improvement in process uniformity. Another method involves feeding 40 MHz from four feed points near the four corners of the electrode. The phase between each feed points are dynamically adjusted to modify the resulting interference pattern, which in turn modulate the plasma distribution in time and affect the process uniformity. We achieved process uniformity of <20% with this method. A third method involves using two frequencies. In this case 40 MHz is used in a supplementary manner to improve the performance of 13 MHz process. Even at 13 MHz, the RF electric field falls off around the corners and edges on a Gen 8.5 substrate. Although, the conventional methods mentioned above improve the uniformity, they have limitations, and they cannot compensate especially as the applied power is increased, which causes the wavelength becomes shorter. 40 MHz is used to overcome such limitations. 13 MHz is applied at the center, and 40 MHz at the four corners. By modulating the interference between the signals from the four feed points, we found that 40 MHz power is preferentially channeled towards the edges and corners. We will discuss an innovative method of controlling 40 MHz to achieve this effect.

  • PDF

Spark Plasma Sintering and Ultra-Precision Machining Characteristics of SiC

  • Son, Hyeon-Taek;Kim, Dae-Guen;Park, Soon-Sub;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.559-569
    • /
    • 2010
  • The liquid-phase sintering method was used to prepare a glass lens forming core composed of SiC-$Al_2O_3-Y_2O_3$. Spark plasma sintering was used to obtain dense sintered bodies. The sintering characteristics of different SiC sources and compositions of additives were studied. Results revealed that, owing to its initial larger surface area, $\alpha$-SiC offers sinterability that is superior to that of $\beta$-SiC. A maximum density of $3.32\;g/cm^3$ (theoretical density [TD] of 99.7%) was obtained in $\alpha$-SiC-10 wt% ($6Al_2O_3-4Y_2O_3$) sintered at $1850^{\circ}C$ without high-energy ball milling. The maximum hardness and compression stress of the sintered body reached 2870 Hv and 1110 MPa, respectively. The optimum ultra-precision machining parameters were a grinding speed of 1243 m/min, work spindle rotation rate of 100 rpm, feed rate of 0.5 mm/min, and depth of cut of $0.2\;{\mu}m$. The surface roughnesses of the thus prepared final products were Ra = 4.3 nm and Rt = 55.3 nm for the aspheric lens forming core and Ra = 4.4 nm and Rt = 41.9 for the spherical lens forming core. These values were found to be sufficiently low, and the cores showed good compatibility between SiC and the diamond-like carbon (DLC) coating material. Thus, these glass lens forming cores have great potential for application in the lens industry.

Validation of and HPLC Method for Nadolol in Human Plasma and Evaluation of Its Pharmacokinetics after a Single-dose in Korean Volunteers (인체 혈장 중 나돌올의 HPLC 분석법 검증 및 단회투여 후 약물동태 연구)

  • Kang, Choon-Mo;Trung, Tarn-Quoc;Kim, Kyeong-Ho;Myung, Ja-Hye;Hwang, Sung-Joo;Kim, Mi-Young;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.431-436
    • /
    • 2005
  • A high-performance liquid chromatographic method was validated for quantitation of nadolol in human plasma. Nadolol and internal standard, pindolol, were extracted with tert-butyl methyl ether after addition of 10 M sodium hydroxide solution. The analytes were separated on a reverse phased C18 column using a mobile phase consisting of 0.05 M ammonium phosphate monobasic buffer, acetonitrile and methanol (81: 17:2 v/v/v) and detected using a fluorescence detector (excitation wavelength 230 nm, emission wavelength 294 nm). The method was specific and sensitive enough to detect as low as 3 ng/mL of nadolol in human plasma. Linear calibration range was 3-150 ng/mL with correlation coefficient greater than 0.999. The overall accuracy was in the range of 96.8 to 103% and precision C.V.(%) 7.30 to 12.2%. The recovery was approximately 100% and stability was confirmed during storage and sample preparation. The present HPLC method was successfully applied to study bioavailability after oral administration of 80 mg of nadolol in healthy Korean subjects. The mean $AUC_{t}$ was $1968{\pm}397\;ng{\cdot}hr/mL$ and $C_{max}$ of $186{\pm}79.3\;ng/mL$ was reached at $3.5{\pm}0.76\;hr$. The mean $t_{1/2}$ of nadolol was $17.3{\pm}2.59\;hr$.

Simultaneous Quantification of Urinary L-, and D-Lactate by Reversed-Phase Liquid Chromatography Tandem Mass Spectrometry (액체크로마토그래프-탠덤질량분석기(LC-MS/MS)를 이용한 소변 내 D-, L- Lactate 분리 및 정량)

  • Moon, Chul Jin;Yang, Song Hyun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.59-64
    • /
    • 2015
  • Purpose: Lactate has two optical isomers, L-lactate and D-lactate. In human L-lactate is the most abundant enantiomer of lactate. As plasma and urinary levels of L-lactate is associated with inherited metabolic disorders in general, D-lactate have been linked to the presence of diabetes and inflammatory bowel disease. Previously developed techniques have shown several limitations to further evaluate D-lactate as a biomarker for this condition. In this paper, we describe a highly sensitive, specific and fast liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the analysis of D-, L-lactate in urine. Methods: D- and L-lactate were quantified using high performance liquid chromatography tandem mass spectrometry (LC-MS/MS) with labelled internal standard. Samples were derivatized with (+)-O,O'-diacety-L-tartaric anhydride (DATAN) and seperated on a Poroshell 120 EC-C18 column. Results: Quantitative analysis of D-, and L-lactate was achieved successfully. Calibration curves were linear (r>0.999) over $0.5-100{\mu}g/mL$. Stabilities for samples were within the 10% varation. Inter- and Intra-day assay variations were below 10%. Conclusion: The presented method proved to be suitable for the quantitation of D- and L-lactate and opens the possibility to explore the use of D-lactate as a biomarker.

Integrated Optical Wave Plates Fabricated by Incorporating Reactive Mesogen in Polymer Waveguide (반응성 메조겐을 이용한 폴리머 광도파로 편광 변환기)

  • Do, Hyun-Soo;Chu, Woo-Sung;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.219-222
    • /
    • 2011
  • Integrated optical waveguide polarization converters are among the essential components for constructing various functional optical integrated circuits. The RM materials have been widely used in liquid crystal displays for fabricating waveplates. In this work, the polarization converters are fabricated by using a solution of Reactive Mesogen(RM) dissolved in liquid crystal(LC). In the middle of the polymer waveguide, a groove is defined by an oxygen plasma etching in a direction perpendicular to the optical waveguide. The solution of RM-LC is inserted to fill up the groove, and then liquid crystal is aligned in a certain direction by applying an electric field. After the alignment, RM materal is crosslinked by UV light so as to form a permanent waveplate. The phase retardation of the waveplate is determined by the width of the groove, and by the birefringence and the degree of alignment of the LC. Polarization conversion efficiency of 90% is obtained for the wavelength of 1550 nm.

Validation of LC-MS/MS method for determination of ginsenoside Rg1 in human plasma (인체 혈장 중 Ginsenoside Rg1의 정량을 위한 LC-MS/MS 분석법 검증)

  • Kim, Yunjeong;Han, Song-Hee;Jeon, Ji-Young;Hwang, Min-Ho;Im, Yong-Jin;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the investigation of the ginsenoside Rg1 in human plasma. After addition of internal standard (digoxin), plasma was diluted with acetone and methanol (80:20), the supernatant was concentrated and analyzed by LC-MS/MS. The optimal chromatographic separation was achieved on an Agilent Eclipse XDB-C18 column ($4.6{\times}150mm$, $5{\mu}m$) with a mobile phase of 0.1% formic acid in water and 0.1% formic acid in methanol at a flow rate of 0.9 mL/min gradient mode. The standard calibration curve for ginsenoside Rg1 was linear ($r^2=0.9995$) over the concentration range 1~500 ng/mL in human plasma. The intra- and inter-day precision over the concentration range of ginsenoside Rg1 was lower than 7.53% (correlation of variance, CV), and accuracy exceeded 98.28%. This LC-MS/MS assay of ginsenoside Rg1 in human plasma is applicable for quantifying in the pharmacokinetic study.