• Title/Summary/Keyword: Liquid flow

Search Result 2,938, Processing Time 0.026 seconds

Electrohydrodynamic Analysis of Dielectric Guide Flow Due to Surface Charge Density Effects in Breakdown Region

  • Lee, Ho-Young;Kang, In Man;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.647-652
    • /
    • 2015
  • A fully coupled finite element analysis (FEA) technique was developed for analyzing the discharge phenomena and dielectric liquid flow while considering surface charge density effects in dielectric flow guidance. In addition, the simulated speed of surface charge propagation was compared and verified with the experimental results shown in the literature. Recently, electrohydrodynamics (EHD) techniques have been widely applied to enhance the cooling performance of electromagnetic systems by utilizing gaseous or liquid media. The main advantage of EHD techniques is the non-contact and low-noise nature of smart control using an electric field. In some cases, flow can be achieved using only a main electric field source. The driving sources in EHD flow are ionization in the breakdown region and ionic dissociation in the sub-breakdown region. Dielectric guidance can be used to enhance the speed of discharge propagation and fluidic flow along the direction of the electric field. To analyze this EHD phenomenon, in this study, the fully coupled FEA was composed of Poisson's equation for an electric field, charge continuity equations in the form of the Nernst-Planck equation for ions, and the Navier-Stokes equation for an incompressible fluidic flow. To develop a generalized numerical technique for various EHD phenomena that considers fluidic flow effects including dielectric flow guidance, we examined the surface charge accumulation on a dielectric surface and ionization, dissociation, and recombination effects.

Investigation of Liquid Droplet Impingement Erosion Corrosion based on the Flow Rate of Anodized 5083-H321 Al Alloy in Seawater (경질양극산화된 5083-H321 알루미늄 합금의 해수 내 액적충격침식부식 손상 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.310-317
    • /
    • 2020
  • This study investigated the damage to the specimen due to liquid droplet impingement erosion corrosion, which improved the corrosion resistance and durability via hard anodization of 5083-H321 aluminum alloy, which is widely used for small ships and marine structures. The experiment combined liquid droplet impingement erosion and electrochemical equipment with the flow rates in natural seawater solution. Subsequently, Tafel extrapolation of polarization curves was performed to evaluate damage due to the liquid droplet impingement erosion corrosion. The damaged surface was observed using a 3D microscope and a scanning electron microscope. The degree of pitting damage was measured using the Image J program, and the surface hardness was measured using the micro-Vickers hardness tester. The corrosion current density, area, depth, and ratio of the damaged areas increased with the increase in flow rate. The grain size of the damaged area at a flow rate of 20 m s-1 showed fewer and minor differences in height, and a smooth curved shape. The hardness of the damaged surface tended to decrease with increase in flow rate.

THEORETICAL STUDY OF MOTION OF SMALL SPHERICAL AIR BUBBLES IN A UNIFORM SHEAR FLOW OF WATER

  • MEHDI, SYED MURTUZA;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.126-134
    • /
    • 2015
  • A simple Couette flow velocity profile with an appropriate correlation for the free terminal rise velocity of a single bubble in a quiescent liquid can produce reliable results for the trajectories of small spherical air bubbles in a low-viscosity liquid (water) provided the liquid remains under uniform shear flow. Comparison of the model adopted in this paper with published results has been accomplished. Based on this study it has also been found that the lift coefficient in water is higher than its typical value in a high-viscosity liquid and therefore a modified correlation for the lift coefficient in a uniform shear flow of water within the regime of the $E\ddot{o}tv\ddot{o}s$ number $0.305{\leq}Eo{\leq}1.22$ is also presented.

Characterization of Sprays used Ultrasonic Vibrant Plate with the Surface roughness (초음파 진동판의 표면조도에 따른 분무특성에 관한 연구)

  • Lee, Jun-Baek;Jeon, In-Kon;Jeon, Heung-Shin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.732-737
    • /
    • 2000
  • The purpose of this study is to compare the SMD(Sauter mean diameter) with different vibrant plates. Each vibrant plates have different surface roughness. Also liquid film thickness are measured for explanation how to concern atomization. Ultrasonic waves is used for vibration. Immersion liquid method is used for the measure of SMD and also liquid film thickness is measured using of point needle method. Distilled water and gasoline fuel are used to liquids. Supplied liquid flow rates are $18{\sim}296cc/min$. Centerline average roughness of vibrant plates are 0.5, 2.0, 4.7, $9.5\;{\mu}m$ and diameter of vibrant plate is 60mm. In result, good atomization of liquid is obtained in widen flow rates. The mean droplet size is increased in orders of 4.7, 2.0. 9.5, $0.5\;{\mu}m$ surface roughness. Distilled water has a big mean droplet size than gasoline fuel in low flow rate. Above the 78cc/min flow rates, distilled water has a small mean droplet size than gasoline fuel. Liquid films changes are measured with ultrasonic power. Also, cavitation effect on sprays is observed.

  • PDF

Gravity Level Dependency of Gas-Liquid Two-Phase Flow

  • Choi, Bu-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.487-493
    • /
    • 2003
  • More reliable design of thermal transport. Power acquisition and thermal management systems requires the through understanding of the flow hydrodynamic. the differences and similarities between the two-phase flow characteristics of two-Phase flow influenced by the gravity levels. The data of flow Patterns, void fraction, frictional pressure drop associated with their characteristics were obtained at $\mu\textrm{g}$. 1g and 2g. Flow patterns and void fraction data obtained at three gravity levels were compared with each other and previous models and correlations.

Flow Patterns of Gas-Liquid Two-phase Flow under Microgravity (미소중력하의 기액이상류의 유동양식)

  • 최부홍
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.460-465
    • /
    • 2003
  • Microgravity experiments were conducted to determine the effect of liquid and gas superficial velocities on flow behaviors. Flow behaviors observed under microgravity conditions can be classified into five flow patterns: bubble. Taylor bubble, slug, semi-annular and annular flows. Transition boundary between four flow patterns could be determined by drift-flux model. It was also found that the effect of gravity and pipe inclination on flow pattern transition was not significant in the inertia dominant region.

Experimental and Numerical Assessment of Liquid Water Exhaust Performance of Flow Channels in PEM Fuel Cells (고분자 전해질 연료전지 유로의 수분배출 특성의 실험 및 해석적 평가)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • Polymer electrolyte membrane (PEM) fuel cells are a promising technology for short-term power generation required in residential and automobile applications. Proper management of water has been found to be essential for improving the performance and durability of PEM fuel cells. This study investigated the liquid water exhaust capabilities of various flow channels having different geometries and surface properties. Three-pass serpentine flow fields were prepared by patterning channels of 1 mm or 2 mm width onto hydrophilic Acrylic plates or hydrophobic Teflon plates, and the behaviors of liquid water in those flow channels were experimentally visualized. Computational fluid dynamics (CFD) simulations were also conducted to quantitatively assess the liquid water exhaust capabilities of flow channels for PEM fuel cells. Numerical results showed that hydrophobic flow channels have better liquid water exhaust capabilities than hydrophilic flow channels. Flow channels with curved corners showed less droplet stagnation than the channels with sharp corners. It was also found that a smaller width is desirable for hydrophobic flow channels while a larger width is desirable for hydrophilic ones. The above results were explained as being due to the different droplet morphologies in hydrophobic and hydrophilic channels.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

A study on the drag reduction in a horizontal two phase flow (수평 2상유동에서 마찰저항감소에 관한 연구)

  • Cha, Gyeong-Ok;Kim, Jae-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.4
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

The Flow of a Liquid Film on Spin Coating (스핀 코팅에서의 액막의 흐름)

  • Kim, Tae-sung
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.146-154
    • /
    • 2013
  • The flow of a liquid film on spin coating is investigated in the case that the fixed volume of a liquid is placed on the center of a stationary disk. Thin film equations that are well approximated when the characteristic length in the vertical direction is much smaller than that in the radial direction (${\varepsilon}{\ll}1$) and have already been proposed in the work of T.-S. Kim & M.-U. Kim (2009), are used. The differential equation that governs the free surface of a liquid when ${\varepsilon}{\ll}1$ and ${\varepsilon}Re{\ll}1$ is also derived. The basic flow is analyzed using the thin film equations and their results are compared to the results of Navier-Stokes equations.