• Title/Summary/Keyword: Liquid desiccant cooling system

Search Result 18, Processing Time 0.024 seconds

A Numerical Analysis of cleat and Mass Transfer on the Dehumidifier of Liquid Desiccant Cooling System (액체 건조제 냉각장치의 제습기에서 열 및 물질전달 수치해석)

  • Go, Gwang-Ho;O, Myeong-Do
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1756-1765
    • /
    • 2001
  • The heat and mass transfer process between the falling liquid desiccant(TEG) film and the air in counter flow at the dehumidifier of desiccant cooling system were investigated. The governing equations with appropriate boundary and interfacial conditions describing the physical problems were solved by numerical analysis. As a result, the effects of the design parameters and the outside air conditions on the rates of dehumidification and sensible cooling were discussed. The results of the dehumidification and sensible cooling rates were compared with those of the cross flow at the same conditions.

Study on the Effect of Performance Factors on the Finned Tube Type Regenerator for Liquid Desiccant Dehumidification (액체 건조제 제습을 위한 핀튜브형 재생기의 성능인자 영향 연구)

  • Jang, Jun-Oh;Park, Moon-Soo;Kang, Kyung-Tae;Lee, Shin-Pyo;Lee, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.845-852
    • /
    • 2003
  • Liquid desiccant dehumidification system can be used effectively to save energy consumed in air conditioning as an alternative compared with conventional air conditioning systems by reducing latent heat load. The dehumidifier and the regenerator from the heart of this system. The latent part of the cooling load is handled using liquid desiccant. In this study, the experimental regenerator has been designed to study the regeneration characteristics of the aqueous triethylene glycol(TEG) system. The performance factors of the regenerator with finned tube heat exchanger were evaluated by a series of experimental runs. The regeneration process is highly dependent on the liquid desiccant conditions, such as, temperature, concentration and flow rate. In addition, the effects of the inlet air temperature, humidity and flow rate were discussed. Data obtained are useful for design guidance and performance analysis of a regenerator, particularly for a liquid desiccant cooling system.

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF

Performance characterization of liquid desiccant system with extended surface (확장표면을 적용한 액체식 제습시스템의 성능특성에 관한 연구)

  • Jang, Young-Soo;Song, Gwi-Eun;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.639-644
    • /
    • 2009
  • This study presents the new idea of liquid desiccant system with extended surface to reduce the system size. The extended surface is inserted between vertical cooling/heating tubes to increase the mass transfer area, and the liquid desiccant flows through the tube wall and the extended surface. Mathematical models for heat and mass transfer between liquid desiccant and air stream at tube wall and extended surface are provided. Dimensionless design parameters governing heat and mass transfer phenomena around the tube and the extended surface are identifier, and dimensionless operating parameters depicting system operating condition including flow rate ratio between dehumidification/regeneration processes, and mass flow rate ratio between air stream and liquid desiccant are explained. The effects of the parameters on system performance are summarized.

  • PDF

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Optimization Design of Liquid Desiccant Cooling System (액체 제습식 냉방 시스템의 최적 설계)

  • Jeon, Dong-Soon;Lee, Sang-Jae;Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Chang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.419-428
    • /
    • 2010
  • This paper presents the optimization process of liquid desiccant cooling system using LiCl aqueous solution as a working fluid. Operating conditions(mass flow rate, conditioner outlet concentration, difference concentration) and design factors for heat exchangers(difference temperature of the district heating water, leaving temperature difference of the conditioner, leaving temperature difference of the regenerator, air temperature difference of the conditioner, air temperature difference of the regenerator) were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of difference temperature of hot water on system performances was also examined. As difference temperature of the district heating water increases, the cooling capacity increases and COP decreases.

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF

Experimental Study on Mass Transfer Rate at the Packed Column of Solar Cooling Liquid Desiccant System Using Counter Flow Configuration

  • Hengki R, R.;Choi, K.H.;Yohana, Eflita;Sukmaji, I.C.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-161
    • /
    • 2009
  • Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed column and the heat transfer and mass transfer will occur. This proposal is try study the mass transfer and heat transfer inside the packed column of dehumidifier and regenerator systems. And later on, the rates of dehumidification and regeneration that were affected by desiccant flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems.

  • PDF

Optimization of Liquid Desiccant Cooling Cycle (액체 제습식 냉방 사이클의 최적화)

  • Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Sang-Jae;Jeon, Dong-Soon;Choi, Jaug-Hyeon;Kwon, Hyeok-Min;Lee, Chang-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.673-678
    • /
    • 2009
  • This paper presents the optimization process of liquid desiccant cooling cycle using LiCl aqueous solution as a working fluid. Operating conditions and design factors for heat exchangers were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of $dT_{hw}$ on system performances was also examined. As $dT_{hw}$ increases, the cooling capacity increases and COP decreases.

  • PDF

An Experimental Study on the Performance Characteristics with Height of a Fin-Tube Liquid Desiccant Dehumidifier (휜-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구)

  • Lee, Su-Dong;Park, Moon-Soo;Chung, Jin-Eun;Choi, Young-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.594-603
    • /
    • 2004
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristics of working factor variables such as inlet solution flow rate, air flow rate, solution concentration and brine temperature have been analyzed. This dehumidifier has the ability to provide running while saving the latent heat load of total energy. The result of this experiment can provide useful data for hybrid air conditioning system.