• Title/Summary/Keyword: Liquid crystal display (LCD)

Search Result 760, Processing Time 0.031 seconds

Synthesis and Characteristic of ${\epsilon}$-type Copper Phthalocyanine Used as Color Filter in LCD Panel (입실론 프탈로시아닌의 합성 및 특성에 대한 연구)

  • Kim, Jae Hwan;Kim, Song Hyuk;Kim, Seong Jin;Hong, Seong-Soo;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.138-142
    • /
    • 2012
  • The ${\epsilon}$ type copper phthalocyanine (${\epsilon}$-CuPc), called as a pigment blue 15 : 6, is a significant material to produce a blue pixel in LCD (Liquid Crystal Display) panel. In this study, ${\epsilon}$-CuPc sample was synthesized at various reaction conditions by applying the seed method using ${\epsilon}$-CuPc nanoparticles as a seed. Adequate synthetic conditions of the samples were selected by analyzing and comparing crystalline structure, crystalline purity, microstructure, and synthetic yield of the samples with ${\alpha}$ and ${\beta}$ crystalline CuPc samples. The chemical and crystalline structure of the samples were tested using FT-IR spectrometer and X-ray diffractometry, respectively. The shape of the particle was examined using field emission scanning electiron microscope while the thermal property was tested utilizing thermogravimetric analysis.

A Study on the Computational Design of Static Mixer and Mixing Characteristics of Liquid Silicon Rubber using Fluidic Analysis for LED Encapsulation (LED Encapsulation을 위한 스태틱 믹서의 전산 설계 및 유동해석을 이용한 액상 실리콘의 혼합 특성에 대한 연구)

  • Cho, Yong-Kyu;Ha, Seok-Jae;Huxiao, Huxiao;Cho, Myeong-Woo;Choi, Jong Myeong;Hong, Seung-Min
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • A Light Emitting Diode(LED) is a semiconductor device which converts electricity into light. LEDs are widely used in a field of illumination, LCD(Liquid Crystal Display) backlight, mobile signals because they have several merits, such as low power consumption, long lifetime, high brightness, fast response, environment friendly. In general, LEDs production does die bonding and wire bonding on board, and do silicon and phosphor dispensing to protect LED chip and improve brightness. Then lens molding process is performed using mixed liquid silicon rubber(LSR) by resin and hardener. A mixture of resin and hardener affect the optical characteristics of the LED lens. In this paper, computational design of static mixer was performed for mixing of liquid silicon. To evaluate characteristic of mixing efficiency, finite element model of static mixer was generated, and fluidic analysis was performed according to length of mixing element. Finally, optimal condition of length of mixing element was applied to static mixer from result of fluidic analysis.

  • PDF

Transmittance Improvement with Reversed Fishbone-Shape Electrode in Vertical Alignment Liquid Crystal Display

  • Lim, Young Jin;Kim, Hyo Joong;Kim, Min Su;Kim, Gi Heon;Kim, Yong Hae;Lee, Gi-Dong;Lee, Seung Hee
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.794-798
    • /
    • 2016
  • A polymer-stabilized vertical alignment (PS-VA) mode with fishbone-shaped pixel electrode structure is mainly used in large-sized liquid crystal displays (LCDs) owing to its advantages such as wide viewing angle, good transmittance and fast response time. One drawback of this mode is a main bone electrode, which crosses in the center of a pixel. It causes the transmittance to decrease badly because LCs cannot be reoriented in this region, and thus, it is particularly unfavorable in an ultra-high-definition LCD. Here, we propose an innovative structure with the main bone electrode relocated to the edge area in a pixel, and investigate how this reverse directed fishbone-shaped pixel electrode structure affects electro-optic characteristics. The proposed structure shows enhanced electro-optic performance, such as the higher transmittance and the faster response time than the conventional VA mode with fishbone-shaped pixel electrode structure.

A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays (16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버)

  • Kim, Cha-Dong;Han, Jae-Yeol;Kim, Yong-Woo;Song, Nam-Jin;Ha, Min-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This work proposes a 1280-RGB $\times$ 800-Dot 70.78mW 0.l3um CMOS LCD driver IC (LDI) for high-performance 16M-color low temperature poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) systems such as ultra mobile PC (UMPC) and mobile applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed LDI optimizes power consumption and chip area at high resolution based on a resistor-string based architecture. The single column driver employing a 1:12 MUX architecture drives 12 channels simultaneously to minimize chip area. The implemented class-AB amplifier achieves a rail-to-rail operation with high gain and low power while minimizing the effect of offset and output deviations for high definition. The supply- and temperature-insensitive current reference is implemented on chip with a small number of MOS transistors. A slew enhancement technique applicable to next-generation source drivers, not implemented on this prototype chip, is proposed to reduce power consumption further. The prototype LDI implemented in a 0.13um CMOS technology demonstrates a measured settling time of source driver amplifiers within 1.016us and 1.072us during high-to-low and low-to-high transitions, respectively. The output voltage of source drivers shows a maximum deviation of 11mV. The LDI with an active die area of $12,203um{\times}1500um$ consumes 70.78mW at 1.5V/5.5V.

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

스퍼터링을 이용한 ITO 박막의 저온 증착

  • Jang, Seung-Hyeon;Lee, Yeong-Min;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.263-263
    • /
    • 2010
  • 투명도전막(indium tin oxide; ITO)은 투명하면서도 전기 전도도가 높기 때문에, 액정표시소자(LCD; Liquid Crystal Display), 전자발광소자(ELD; Electroluminescent Display) 및 전자 크로믹 소자(Electrochromic Display)를 포함하는 평판형 표시 소자(FPD; Flat Panel Display)와 태양전지 등에 이용되고 있다. 낮은 비저항과 높은 투과율의 ITO 박막은 $300^{\circ}C$ 이상의 고온에서 코팅해야 하는 것으로 알려져 있다. 그러나 최근 플라스틱과 같은 연성 소자가 전자부품에 널리 이용되면서 ITO를 저온에서 증착해야할 필요성이 대두되고 있다. 본 연구에서는 ITO를 플라스틱에 적용하기 위한 저온 코팅 공정 및 시편의 전 후처리공정을 개발하여 박막의 특성을 알아보고자 한다. 실험에 사용된 기판은 고투과율의 고분자(polyethylene terephthalate; PET) 필름이며 $5\;{\times}\;10\;cm^2$의 크기로 절단하여 알코올로 초음파 세척을 실시하였고, 진공 용기에 장입한 후 펄스전원을 이용하여 3분간 in-situ 청정을 실시하였다. ITO 코팅은 마그네트론 스퍼터링을 이용하였으며, 코팅시간, 전처리, 후처리, 기판온도, 산소유량 등 코팅 조건에 따른 박막의 특성을 조사하였다. ITO 박막의 코팅 조건에 따른 박막의 결정구조 분석은 x-선 회절(x-ray diffraction; XRD)을 이용하였고, 박막의 표면형상과 두께 보정 및 단면의 미세조직과 결정 성장 여부 등은 투과전자 현미경(transmission electron microscope; TEM)을 이용하여 분석하였다. 또한 ITO 박막의 면저항과 분광특성은 four-point Probe (CMP-100MP, Advanced Instrument Technology), spectrophotometer (UV-1601, SHIMADZU)를 이용하여 측정하였다. ITO 박막의 광학특성 분석 결과 전광선 투과율은 두께에 따라 변화 하였지만, 색차와 Haze 값은 증착 조건에 따라 큰 차이는 보이지 않았다. 그리고 박막의 결정화에 영향을 주는 가장 중요한 인자는 기판온도이지만, 기판온도를 높이지 못할 경우 비평형 마그네트론(unbalanced-magnetron; UBM)에 의해서 플라즈마 밀도를 높이는 방법으로 유사한 효과를 얻을 수 있음을 확인하였다.

  • PDF

Effects of Form Errors of a Micromirror Surface on the Optical System of the TMATM(Thin-film Micromirror ArrayTM) Projector

  • Jo, Yong-Shik;Kim, Byoung-Chang;Kim, Seung-Woo;Hwang, Kyu-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 2000
  • The projectors using liquid crystal display(LCD) have faults such as low optical efficiency, low brightness and even heat generation. To solve these problems reflective-type spatial light modulators based on MEMS (Microelectromechanical Systems) technology have emerged. Digital Micromirror DeviceTM(DMDTM), which was already developed by Texas Instruments Inc., and Thin-film Micromirror ArrayTM(TMATM), which has been recently developed by Daewoo Electronics Co., are the representative examples. The display using TMATM has particularly much higher optical efficiency than other projectors. But the micromirrors manufactured by semiconductor processes have inevitable distortion because of the limitations of the manufacturing processes, so that the distortions of their surfaces have great influence on the optical efficiency of the projector. This study investigated the effects of mirror flatness on the optical performance, including the optical efficiency, of the TMATM projector. That is to say, as a part of the efforts to enhance the performance of the TMATM projector, how much influence the form errors of a micromirror surface exert on the optical efficiency and the modulation of gray scale of the projector were analyzed through a pertinent modeling and simulations.

  • PDF

Luminance Normalization of Optical Sheets in a Backlight Unit for LCD-TVs (LCD-TV용 백라이트 광학시트의 휘도 정량화)

  • Jeong, Jong-Mun;Kim, Jung-Hyun;Shin, Myeong-Ju;Lee, Mi-Ran;Chung, Jae-Yoon;Jeong, Hee-Suk;Kim, Jin-Sheon;Hong, Byeong-Hee;Kang, June-Gill;Cho, Guang-Sup
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.424-432
    • /
    • 2007
  • Luminance properties of external electrode fluorescent lamps and optical components in backlight unit (BLU) and optical transmission rates of optical sheets, are investigated for LCD-TV of 32" in diagonal with WXGA level resolution (1366$\times$768). The luminance is measured in 12-lamps and 18-lamps of BLU. The luminance uniformity preserves about 85 % in the 12-lamps backlight, while the luminance of optical components and the efficiency of backlight in the 12-lamps are lower than those in the 18-lamps backlight. When the lamp luminance in BLU having 12-lamps and 18-lamps is normalized as 100 %, the relative luminance of a diffusion plate, a diffusion sheet, a prism sheet (BEF), a polarization sheet (DBEF), has a constant value without dependence on a lamp luminance. The relative luminance of optical components in 12-lamps BLU is lower than that in 18-lamps backlight. The light transmission rate, the relative luminance of liquid crystal display panel with the luminance 100 % of backlight, is 7.14 % in the use of DBEF and BEF, 6.12 % in the use of only DBEF, and 3.21 % in the use of only BEF. Those Data obtained in this experiment for the lamps and optical components, are the design parameters for the LCD backlight.

Physical Characteristics of PECVD SiON thin film for OLED passivation (OLED passivation에 적응하기 위한 PECVD SiON 박막의 물리적 특성)

  • Yoon, Jae-Kyoung;Kwon, Oh-Kwan;Yoon, Won-Min;Shin, Hoon-Kyu;Phak, Chan-Eon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.292-292
    • /
    • 2009
  • OLED(Organic Light Emitting Device)는 LCD(Liquid Crystal Display)의 뒤를 잇는 차세대 디스플레이의 선두주자로서 자체발광형이기 때문에 백라이트 등의 보조광원이 불필요하며, 구동전압이 낮고 넓은 시야각과 빠른 응답속도 등의 특징을 가지고 있다. 또한 플렉서블 기판을 사용할 수 있어 차세대 디스플레이인 플렉서블 디스플레이에 적합하다. 플렉서블한 디스플레이를 만들기 위해서 플라스틱 기판에 OLED 물질을 사용하여 기존에 무겁고, 깨지기 쉬우며, 변형이 불가능한 유리로 만든 소자 보다 더 가볍고 깨지지 않고 변형이 가능한 플렉서블 디스플레이를 제작 할 수 있다. 그러나 플라스틱 기판은 매우 큰 투습율을 가지고 있어 OLED소자에 적용시키면 공기 중의 수분이나 산소와 접촉이 많아져 쉽게 산화되어 소자의 효율 및 수명이 짧아진다. 또한 OLED에 사용되는 유기물도 산소나 수분에 의해 특성이 급격히 저하되기 때문에 산소 및 수분의 차단은 필수적이다. 이러한 단점을 최소화하기 위해서 PECVD(Plasma Enhanced Chemical Vapor Deposition)로 만든 SiON(Silicon Oxynitride) 박막을 차단막(Passivation layer)으로 사용하였다. PECVD를 이용하여 SiON 박막을 증착시킬 때 RF Power, 공정압력, Distance의 변화에 따른 박막의 결정화도, 수분투습도, 광투과도 등의 특성을 FT-IR(Fourier Transform Infrared Spectroscopy), Ellipsometer, UV-visible Spectrophotometer, MOCON를 이용하여 SiON 박막의 특성을 고찰하였다.

  • PDF

Influence upon Machining Accuracy of Micro-Pattern Roll Mold Processed by Temperature Variation (미세 패턴 롤 금형 가공시스템의 온도변화가 가공정밀도에 미치는 영향 연구)

  • Je, T.J.;Park, S.C.;Lee, K.W.;Noh, J.S.;Choi, D.S.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.107-111
    • /
    • 2009
  • Temperature variation happens in micro prism roll mold processing system during machining the prism pattern roll mold using manufacturing optical films of LCD (liquid crystal display). This temperature variation induces pitch errors of the prism patterns. The temperature variation displaces the positions of the diamond cutting tool on the roll which was coated by the copper. In order to prevent the pitch errors, the stabilizing the temperature of machining environment is needed. Therefore, the researching on the temperature variation of the ultra-precision roll mold processing system on the machining of micro prism rot 1 mold is needed. In this paper, the temperature variation of micro prism roll mold processing system is researched, the influence is analyzed, and the study for reducing the pitch errors carried out.