• Title/Summary/Keyword: Liquid crystal alignment layer

Search Result 154, Processing Time 0.027 seconds

A Study on Rubbing-induced Molecular Alignment on an Orientation Layer of Polyimide for Liquid Crystal Display (LCD의 폴리이미드 배향막에서 Rubbing에 의한 분자배향에 관한 연구)

  • 최승우;정재원;김승빈;황상만;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.306-313
    • /
    • 1998
  • To elucidate the liquid crystal(LC) molecules alignment mechanism, it is important to determine the molecular orientation of the rubbed polymer surface molecules that directly contact with LC molecules. In this work, the molecular orientation on a rubbed surface of polyimide (SE-3310, Nissan) film has been studied by polarized FTIR absorption spectroscopy. It has been found that molecular chain on the rubbed surface of polymide film are oriented along the rubbing direction and are tilted up on an average by 5.0$^{\circ}$. In the SHG(Second Harmonic Generation) measurement, the pretilt angle of molecular chain on the poylmide fim was 4.6$^{\circ}$ fro, the surface plane. And the pedit angle of liquid crystal (ZLI-2293, Merck) molecules measured by crystal rotation method was 5.4$^{\circ}$in the same rubbing condition.

  • PDF

A model of adsorption of liquid crystal on the polymer surface based on the analysis of the surface alignment of the adsorbed layer

  • Oh, Se-Jun;Miyashita, Tetsuya;Uchida, Tatsuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.940-941
    • /
    • 2009
  • The adsorption strength of liquid crystal molecules on the polymer surface was compared measuring temperature dependence of retardation above Nematic-Isotoropic transition temperature ($T_{NI}$). The relationship between surface order parameter and adsorption strength on the polymer surface was discussed.

  • PDF

Liquid Crystal Orientation Mechanism: Competition Between Rubbing and Ion-beam Method

  • Kim, Ji-Ho;Han, Jeong-Min;Shon, Jin-Geun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1457-1461
    • /
    • 2013
  • The effect of liquid crystal (LC) alignment on a homeotropic polyimide (PI) surface induced by ion beam (IB) irradiation and rubbing process was studied. LC alignment was not affected by IB irradiation with an exposure time of 10 s, and an IB irradiation with an exposure time of 60 s more effectively oriented the LCs on the PI layer than the rubbing process. It was assumed that the LC alignment depended on the C-O bonds created from the C=O bonds on the PI surface broken by IB irradiation after an exposure time of 60 s, which resulted in a strong surface energy that transformed the homeotropic LC alignment to homogeneous states.

LC Orientation Characteristics of NLC on Polyimide Surface According to Ion-beam Irradiation Angles (이온빔 조사각도에 따른 네마틱 액정의 액정 배향 특성)

  • Lee, Kang-Min;Oh, Byeong-Yun;Park, Hong-Gyu;Lim, Ji-Hun;Lee, Won-Kyu;Na, Hyun-Jae;Kim, Byoung-Yong;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.329-329
    • /
    • 2008
  • To date, rubbing has been widely used to align LC molecules uniformly. Although rubbing can be simple, it has fundamental problems such as the generation of defects by dust and static electricity, and difficulty in achieving a uniform LC alignment on a large substrate. Therefore, noncontact alignment has been investigated. Ion beam induced alignment method, which provides controllability, nonstop process, and high resolution display. In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the poly imide under various ion beam angles. In this experiment, Polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposure poly imide surface was observed. The tilt angle of NLC on the PI surface with ion beam exposure can be measured under $1^{\circ}4 for all of irradiation angles. In addition, it can be achieved the good ED properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays

  • Oh, Byeong-Yun;Heo, Gi-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • In the present work, a Ni-doped indium zinc oxide (NIZO) film and its multilayers with Ag layers were investigated as transparent conducting electrodes for liquid crystal display (LCD) applications, as a substitute for indium tin oxide (ITO) electrodes. By interposing the Ag layer between the NIZO layers, the loss of the optical transmittance occurred; however, the Ag layer brought enhancement of electrical sheet resistance to the NIZO/Ag/NIZO multilayer electrode. The twisted nematic cell based on the NIZO/Ag/NIZO multilayer electrode exhibited superior electro-optical characteristics than those based on single NIZO electrode and was competitive compared to those based on the conventional ITO electrode. An LCD-based NIZO/Ag/NIZO multilayer electrode may allow new approaches to conventional ITO electrodes in display technology.

Study on Electrical Characteristics of Chloromethylated Polyimide

  • Yu, I.H.;Zhong, Z-X;Lee, M.H.;Lee, S.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.472-475
    • /
    • 2005
  • The electrical performances of liquid crystal (LC) cells with chloromethylated polyimide (CMPI) alignment layers were investigated. The CMPI layer was previously reported as a multifunctional layer that does role of LC alignment and planarization layer as well as photo-alignment material with high photosensitivity and excellent thermal stability. The capacitance-voltage (C-V) characteristics of LC cells with CMPI alignment layers were measured. Mechanical rubbing of the CMPI layer did not generate much difference in residual DC when compared to commercial PI. However, the LC cell with photo-oxidation CMPI layer shows a high residual DC value and a corresponding low voltage holding ratio (VHR) due to the photo-induced ionic charges on the alignment layer.

  • PDF

Properties of liquid crystal alignment layers exposued to ion-beam irradiation enemies (이온빔 에너지에 따른 액정배향막의 전기광학적 특성연구)

  • Oh, Byeong-Yun;Lee, Kang-Min;Park, Hong-Gyu;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Young-Hwan;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.430-430
    • /
    • 2007
  • In general, polyimides (PIs) are used in liquid crystal displays (LCDs) as alignment layer of liquid crystals (LCs). Up to date, the rubbing alignment technique has been widely used to align liquid crystals on the PI surface, which is suitable for mass-production of LCDs because of its simple process and high productivity. However, this method has some disadvantages. Rubbed PI surfaces include the debris left by the cloth and the generation of electrostatic charges during rubbing process. Therefore, rubbing-free techniques for LC alignment are strongly required in LCD technology. In this experiment, PI was uniformly coated on indium-tin-oxide electrode substrates to form LC alignment layers using a spin-coating method and the PI layers were subsequently imidized at 433 K for 1 h. The thickness of the PI layer was set at 50 nm. The LC alignment layer surfaces were exposed to an $Ar^+$ ion-beam under various ion-beam energies. The antiparallel cells and twisted-nematic (TN) cells for the measurement of pretile angle and electro-optical characteristics were fabricated with the cell gap of 60 and $5\;{\mu}m$, respectively. The LC cells were filled with nematic LC (NLC, MJ001929, Merck) and were assembled. The NLC alignment capability on ion-beam-treated PI was observed using photomicroscope and the pretilt angle of the NLC was measured by the crystal-rotation method at room temperature. Voltage-transmittance (V-T) and response time characteristics of the ion-beam irradiated TN cell were measured by a LCD evaluation system.

  • PDF

EO Characteristics of LC Alignment Layers Exposured Ion-beam Irradition Angles (이온빔 조사각도에 따른 액정 배향 막의 전기 광학적 특성)

  • Lee, Kang-Min;Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Kang, Dong-Hun;Han, Jin-Woo;Kim, Young-Hwan;Ok, Chul-Ho;Han, Jeong-Min;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.400-400
    • /
    • 2007
  • In this study, we investigated liquid crystal (LC) alignment with ion beam (IB) that non contact alignment technique on polyimide and electro-optical characteristics of twisted nematic (TN)-liquid crystal display (LCD) on the polyimide under various ion beam angles. In this experiment, polyimide layer was coated on glass by spin-coating and Voltage-transmittance(VT) and response time characteristics of the TN cell were measured by a LCD evaluation system. The good characteristics of the nematic liquid crystal (NLC) alignment with the ion beam exposured polyimide surface was observed. In addition, it can be achieved the good EO properties, and residual DC property of the ion beam aligned TN cell on polyimide surface.

  • PDF

Development of X-ray Detector using Liquid Crystal with Front Light (전면광원(Front Light)을 적용한 액정 X선 검출기 개발)

  • Rho, Bong Gyu;Baek, Sam Hak;Kang, Seok Jun;Lee, Jong Mo;Bae, Byung Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.831-840
    • /
    • 2019
  • The X-ray detector by liquid crystal with front light was proposed and verified by a X-ray image. The proposed detector utilizes the visible light instead of the electric signal by transistor. Therefore, it shows low noise and can be fabricated at low cost. The liquid crystal detector uses the orientation change of the liquid crystal molecule by conductivity change of the photoconductive layer. We can get the X-ray image from the transmitted light through the liquid crystal. The X-ray dose was calibrated from the measured transmittance of the visible light after comparison to the reference transmittance curve of the liquid crystal. The amorphous Se was used for photo con ducting layer and parylene was used for the liquid crystal alignment instead of the conventional alignment layer which needs high-temperature process over 200℃. The proposed X-ray detector can decrease the X-ray dose by high sensitivity which was verified by simulation. After the fabrication of the X-ray detector, the X-ray image was obtained as a function of the bias voltage to the liquid crystal. 10 lines/mm resolution was obtained from the line pattern and we will apply it to the 17inch diagonal liquid crystal X-ray detector with 3π retardation.

Fast Switching of Twisted Nematic Liquid Crystals Display Based on a High-K Yttrium Oxide (고유전율 Yttrium Oxide을 이용한 네마틱 액정 디스플레이의 고속 응답 전기-광학 특성)

  • Jung, Yoon Ho;Jeong, Hae-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.302-306
    • /
    • 2019
  • We investigated a solution-derived $Y_2O_3$ film treated by ion beam (IB) irradiation as a liquid crystal (LC) alignment layer. With IB irradiation, homogeneous LC alignment was achieved irrespective of the annealing temperature. To verify the effect of IB irradiation, we conducted surface analyses such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). As $Y_2O_3$ is a high-k material, the electro-optical properties of the twisted nematic (TN) cells were superior to those of conventional TN cells based on a rubbed polymer, with an LC rising time of 4.1ms and falling time of 2.9ms. The IB-irradiated $Y_2O_3$ is a good alternative as an alignment layer for fast-switching TN LC displays.