• Title/Summary/Keyword: Liquid air

Search Result 1,742, Processing Time 0.026 seconds

Designing an Efficient Reward Function for Robot Reinforcement Learning of The Water Bottle Flipping Task (보틀플리핑의 로봇 강화학습을 위한 효과적인 보상 함수의 설계)

  • Yang, Young-Ha;Lee, Sang-Hyeok;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.81-86
    • /
    • 2019
  • Robots are used in various industrial sites, but traditional methods of operating a robot are limited at some kind of tasks. In order for a robot to accomplish a task, it is needed to find and solve accurate formula between a robot and environment and that is complicated work. Accordingly, reinforcement learning of robots is actively studied to overcome this difficulties. This study describes the process and results of learning and solving which applied reinforcement learning. The mission that the robot is going to learn is bottle flipping. Bottle flipping is an activity that involves throwing a plastic bottle in an attempt to land it upright on its bottom. Complexity of movement of liquid in the bottle when it thrown in the air, makes this task difficult to solve in traditional ways. Reinforcement learning process makes it easier. After 3-DOF robotic arm being instructed how to throwing the bottle, the robot find the better motion that make successful with the task. Two reward functions are designed and compared the result of learning. Finite difference method is used to obtain policy gradient. This paper focuses on the process of designing an efficient reward function to improve bottle flipping motion.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

Green Catalysts for Isobutane Alkylation Process (이소부탄 알킬레이션 공정을 위한 친환경 촉매)

  • Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.587-593
    • /
    • 2011
  • As a result of increasing environmental concerns related to air quality and maintenance of automobiles, the alkylation of isobutane with olefins has become an even more important process for production of high quality gasoline. However, the widespread use of the alkylation process is limited by the polluting and corrosive liquid acid catalysts (HF and $H_2SO_4$) currently used in industry. For the reason, a large number of solid catalysts, especially zeolites, have been studied as an environmental friendly catalyst in this process. Recently, mesoporous solid acids and ionic liquids have been investigated as a green catalyst. In this review, the research of environmental friendly catalysts for an isobutane alkylation is summarized.

Comparison of Combustion Efficiency of Multi Hole Pintle Injector and Continuous Pintle Injector (다중 홀 핀틀 인젝터와 연속형 핀틀 인젝터의 연소성능 비교)

  • Nam, JeongSoo;Lee, KeonWoong;Koo, JaYe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.165-172
    • /
    • 2022
  • Pintle injector is the most suitable injector for thrust control because it can control the area of propellant injection. Accordingly, the combustion test of multiple hole pintle injector and continuous type pintle injector was carried out in this paper using liquid oxygen and gas methane. The combustion performance of the two pintles was verified with the characteristic speed efficiency, and the experimental results were compared according to the O/F and combustion chamber pressure and under similar conditions. The efficiency of the multi hole pintle was generally somewhat higher than continuous pintle when pintle opening distance(the area of dispensing oxidizer) was in a 100% thrust condition.

Development of a One-dimensional Numerical Model of the Electrically Heated Three-Way Catalyst For Start-up Heating in a 48-V Gasoline Hybrid Vehicle (48-볼트 가솔린 하이브리드 차량 초기 시동 시 배기 정화 성능 분석을 위한 1차원 전기 히터 촉매 해석 모델 개발)

  • Seongsu Kim ;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.150-155
    • /
    • 2023
  • Cold-start emissions are given great importance under the Euro-7 emission standard due to their significant impact on overall vehicle emissions. When an engine is started from a cold state, the combustion process is not yet optimized, leading to higher emissions. Hybrid vehicles, in particular, may face additional challenges, as their engine may remain inactive for extended periods, causing their catalysts to cool down and potentially become less effective in reducing emissions. In the present study, the performance of an electric heater was investigated as a means to enhance the catalyst heating during the start-up time. A simulation tool was utilized to develop a model for the gasoline exhaust aftertreatment system. The result indicates that the heater was able to increase the three-way catalyst temperature to 500℃ in 4 s using 20 kW power. In addition, the implementation of a secondary air supply resulted in reduced temperature overshoot and improved conversion efficiencies.

Commissioning results of the KSTAR helium refrigeration system (KSTAR 저온헬륨설비 시운전 결과)

  • Cho, K.W.;Chang, H.S.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, Y.S.;Bak, J.S.;Yang, S.H.;Fauve, E.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.64-68
    • /
    • 2009
  • To keep the superconducting (SC) magnet coils of KSTAR at proper operating conditions, not only the coils but also other cold components, such as thermal shields (TS), magnet structures, SC bus-lines (BL), and current leads (CL) must be maintained at their respective cryogenic temperatures. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9kW at 4.5K without liquid nitrogen $(LN_2)$ pre-cooling has been manufactured and installed for such purposes. In this proceeding, we will present the commissioning and initial operation results of the KSTAR HRS. Circuits which can simulate the thermal loads and pressure drops corresponding to the cooling channels of each cold component of KSTAR have been integrated into the helium distribution system of the HRS. Using those circuits, the performance and the capability of the HRS, to fulfill the mission of establishing the appropriate operating condition for the KSTAR SC magnet coils, have been successfully demonstrated.

$YbFeCoO_4$ single crystal growth by FZ method (FZ법에 의한 $YbFeCoO_4$ 단결성 성장)

  • Kang, S.M.;Orr, K.K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 1994
  • $YbFeCoO_4$ single crystal was grown by floating zone method. The atmospheric condition of the growth was controlled in air and the growth rate was 1~2 mm/hr. After melting the feed rod of the composition of $YbFeCoO_4$, $YbFeCoO_4$ was decomposed to $YbFeCoO_4$ and CoO phase in the initial state of the growth. The liquid composition, however, changed to the direction of the eutectic point along the liquidus line and then stopped at the point in which $YbFeCoO_4$ single crystal could be grown. The growth direction of the crystal was preferred orientation [110], perpendicular to the c-axis in the hexagonal system due to using the polycrystalline seed.

  • PDF

A Study on the Comparison of Emissions and Fuel Efficiency Performance of 2.0 Liter LPG Hybrid Engine and Vehicle (2.0 리터급 LPG 하이브리드 엔진 및 차량의 배출가스 및 연비성능 비교에 관한 연구)

  • Seokjoo Kwon;Bonseok Koo;Jaehoon Kang;Kangmyeon Kim;Sedoo Oh;Youngho Seo
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.191-197
    • /
    • 2023
  • LPG direct injection (LPDi) technology is a method of improving the weaknesses of existing LPG vehicles by directly injection into the combustion chamber. This study was conducted on the comparison of emissions and fuel efficiency performance of the engine and vehicle by applying LPDi technology. The LPDi hybrid engine's maximum output and maximum torque were measured at an equivalent level of less than 1% compared to conventional gasoline fuel. The fuel amount was corrected using the LCU controller, and the THC, CO, and NOx emissions were reduced to 90% in the operating range of the three-way catalyst through air-fuel ratio control. The analysis of THC+NOx and CO emissions in FTP-75 (CVS-75) driving mode satisfied the US LEV III SULEV30 regulation.

Analysis of Holdup Characteristics of Large and Small Bubbles in Three-Phase Fluidized Beds by using a Dynamic Gas Disengagement Method (삼상유동층에서 동력학적 기체유출 측정방법에 의한 큰 기포와 작은 기포의 체류량 특성 해석)

  • Lim, Hyun Oh;Lim, Dae Ho;Seo, Myung Jae;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.605-610
    • /
    • 2011
  • Phase holdup characteristics of relatively large and small bubbles were investigated in a three-phase(gasliquid-solid) fluidized bed of which diameter was 0.105 m(ID) and 2.5 m in height, respectively. Effects of gas(0.01~0.07 m/s) and liquid velocities(0.01~0.07 m/s) and particle size($0.5{\sim}3.0{\times}10^{-3}m$) on the holdups of relatively large and small bubbles were determined. The holdups of two kinds of bubbles in three phase fluidized beds were estimated by means of static pressure drop method with the knowledge of pressure drops corresponding to each kind of bubble, respectively, which were obtained by dynamic gas disengagement method. Dried and filtered air which was regulated by gas regulator, tap water and glass bead of which density was $2500kg/m^3$ were served as a gas, a liquid and a fluidized solid phase, respectively. The two kinds of bubbles in three-phase fluidized beds, relatively large and small bubbles, were effectively detected and distinguished by measuring the pressure drop variation after stopping the gas and liquid flow into the column as a step function: The increase slope of pressure drop with a variation of elapsed time was quite different from each other. It was found that the holdup of relatively large bubbles increased with increasing gas velocity but decreased with liquid velocity. However, the holdup showed a local minimum with a variation of size of fluidized solid particles. The holdup of relatively small bubbles increased with an increase in the gas velocity or solid particle size, while it decreased slightly with an increase in the liquid velocity. The holdups of two kinds of bubbles were well correlated in terms of operating variables within this experimental conditions, respectively.

Changes in Chemical Properties and Effect on Germination of Radish Seed from Aeration of Co-digestate Fertilizers (통합 혐기소화액별 폭기처리에 따른 화학적 성분 변화와 무의 발아효과)

  • Byeon, Ji-Eun;Lee, Hong-Ju;Ryoo, Jong-Won;Hwang, Sun-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.508-517
    • /
    • 2020
  • This study aimed to determine the minimum period of aeration treatment of co-digestate to develop it as liquid fertilizer and the chemical changes that occur in the aerobic liquefying process. The co-digestates were divided into three types depending on their additives: swine slurry anaerobic digestate (SS AD), swine slurry 70% + cow slurry 30% anaerobic digestate (SS + CS AD), and swine slurry 70% + apple pomace 30% anaerobic digestate (SS + AP AD). The pH of all co-digestates increased rapidly after 3 days of aerobic treatment, but had slightly decreased in SS AD after 9 days and in SS + CS AD and SS + AP AD after 15 days. All co-digestates showed a strongly reduced pH between 27 and 36 days of aeration treatment. SS AD had lower pH value, dissolved oxygen (DO), NH4-N, and NO3-N content under aerobic conditions than other co-digestates. To assess the fully decomposed liquid fertilizer, a germination test was performed on the undiluted and diluted co-digestate using the liquid fertilizer germination index (LFGI) method. The relative germination ratio, relative root elongation, and germination index of SS AD were higher than those of the others. When the LFGI method was used for the germination test, all co-digestates showed an appropriate germination index of 70 after 60 days of aeration treatment. Thus, we suggest that the minimum period of aeration treatment for co-digestates might be 60 days to develop the fully decomposed liquid fertilizer.