• Title/Summary/Keyword: Liquid air

Search Result 1,742, Processing Time 0.036 seconds

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

Commissioning result of the KSTAR in-vessel cryo-pump

  • Chang, Y.B.;Lee, H.J.;Park, Y.M.;Lee, Y.J.;Kwag, S.W.;Song, N.H.;Park, D.S.;Joo, J.J.;Moon, K.M.;Kim, N.W.;Yang, H.L.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.53-58
    • /
    • 2013
  • KSTAR in-vessel cryo-pump has been installed in the vacuum vessel top and bottom side with up-down symmetry for the better plasma density control in the D-shape H-mode. The cryogenic helium lines of the in-vessel cryo-pump are located at the vertical positions from the vacuum vessel torus center 2,000 mm. The inductive electrical potential has been optimized to reduce risk of electrical breakdown during plasma disruption. In-vessel cryo-pump consists of three parts of coaxial circular shape components; cryo-panel, thermal shield and particle shield. The cryo-panel is cooled down to below 4.5 K. The cryo-panel and thermal shields were made by Inconel 625 tube for higher mechanical strength. The thermal shields and their cooling tubes were annealed in air environment to improve the thermal radiation emissivity on the surface. Surface of cryo-panel was electro-polished to minimize the thermal radiation heat load. The in-vessel cryo-pump was pre-assembled on a test bed in 180 degree segment base. The leak test was carried out after the thermal shock between room temperature to $LN_2$ one before installing them into vacuum vessel. Two segments were welded together in the vacuum vessel and final leak test was performed after the thermal shock. Commissioning of the in-vessel cryo-pump was carried out using a temporary liquid helium supply system.

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF

The Studies of Photocatalyst Development and the Optimum Operation Conditions for the Removal of Ammonia in a Mixed Reactor of Liquid-vapor Phase (기-액 복합 광반응기에서의 악취성 암모니아 제거를 위한 촉매개발과 반응시스템의 최적조건 색출 연구)

  • Kim, Hae-Ri;Jeon, Min-Kyu;Kim, Joon-Woo;Joo, Gwang-Tae;Choung, Suk-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.512-522
    • /
    • 2008
  • Ammonia is a major compound of odor in livestock house. To enhance the performance of ammonia oxidation (decomposition). the gas-liquid, two phase photocatalytic oxidation system was designed and prepared in this study. Commercial P-25 as $TiO_2$ catalyst was used for ammonia decomposition. V/P-25 catalyst prepared by sol gel method was also used for the removal of by-producted $NO_x$ in $NH_3$ oxidation reaction. When $TiO_2$ was used as a photocatalyst, the conversion to $N_2$ in ammonia decomposition reached above 90% until 200hr (The air flow rate of 4L/min with the ammonia concentration up to 25ppm.). However, considerable amounts of NO and $NO_2$ were formed as a result of $NH_3$ oxidation (as a by-product). Therefore, we added Vanadia impregnated $TiO_2$(P-25) catalyst for the removal of $NO_x$ at the end of reaction trail. The results of a pilot-scale operation were successful to achieve the simultaneous removal of $NH_3\;and\;NO_x$ about 81 and 87%, respectively.

A CLINICOSTATICAL STUDY OF JAW CYST BETWEEN 2001${\sim}$2005 (최근 5년간 구강악안면 낭종 환자에 대한 통계학적 검토)

  • Lim, So-Yeon;Yeo, Duck-Sung;Lee, Hyun-Jin;Kim, Hyun-Kyung;An, Kyung-Mi;Sohn, Dong-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.588-593
    • /
    • 2006
  • Cyst is pathologic disease develops in hard tissue as well as soft tissue, which is lined by epithelium filled with liquid, semi-liquid, or air. Origins and symptoms of the cyst are various according to region, and symptoms are malocclusion, diversion of root, tooth mobility, periapical swelling, discoloration and lesion expansion, because the odontogenic cysts begin in the numerous rests of odontogenic epithelium. But almost cysts produce no symptoms unless secondary infection occurs. Treatment of small cysts may include extraction, endodontic therapy, and apical surgery. Treatment of a large cysts usually involves surgical removal (enucleation), Marsupialization(a method of decompression) or combination of two before mentioned. Bone graft is done for helping of bone defect healing at the same time of enucleation This clinical research from January 2000 to December 2005, analyzed by the age, sex, classification, size, region, treatment method, whether or not of bone graft of cyst in the jaw in Daegu Catholic University Hospital.

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

Characteristic Study for Methyl-mercaptain Removal by an Essential Oil (식물추출물을 이용한 메틸멀캡탄 제거 특성 연구)

  • Park, Young-Gyu
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.151-156
    • /
    • 2007
  • Increasing public concerns over odors and air regulations necessitates the remediation of a wide range of odorous compounds for industrial purpose. Currently, wet scrubbing technique by neutralization using essential oils is utilized to treat methyl mercaptan odor. The chemical analysis is performed to analyze the composition of an essential oil by GC-MS. The objective of this study is to clarify the possibility of the neutralization of odors sprayed in the fixed bed and determine the removal efficiencies in the misty aerosol by different input odor concentration. It is found that methyl mercaptan is significantly removed in the wet scrubber, and their removal efficiency of methyl mercaptan is obtained by 98%.

Fabrication of Metallic Particle Dispersed Ceramic Based Nanocomposite Powders by the Spray Pyrolysis Process Using Ultrasonic Atomizer and Reduction Process

  • Choa, Y.H.;Kim, B.H.;Jeong, Y.K.;Chae, K.W.;T.Nakayama;T. Kusunose;T.Sekino;K. Niibara
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.151-156
    • /
    • 2001
  • MgO based nanocomposite powder including ferromagnetic iron particle dispersions, which can be available for the magnetic and catalytic applications, was fabricated by the spray pyrolysis process using ultra-sonic atomizer and reduction processes. Liquid source was prepared from iron (Fe)-nitrate, as a source of Fe nano-dispersion, and magnesium (Mg)-nitrate, as a source of MgO materials, with pure water solvent. After the chamber were heated to given temperatures (500~$^800{\circ}C$), the mist of liquid droplets generated by ultrasonic atomizer carried into the chamber by a carrier gas of air, and the ist was decomposed into Fe-oxide and MgO nano-powder. The obtained powders were reduced by hydrogen atmosphere at 600~$^800{\circ}C$. The reduction behavior was investigated by thermal gravity and hygrometry. After reduction, the aggregated sub-micron Fe/MgO powders were obtained, and each aggregated powder composed of nano-sized Fe/MgO materials. By the difference of the chamber temperature, the particle size of Fe and MgO was changed in a few 10 nm levels. Also, the nano-porous Fe-MgO sub-micron powders were obtained. Through this preparation process and the evaluation of phase and microstructure, it was concluded that the Fe/MgO nanocomposite powders with high surface area and the higher coercive force were successfully fabricated.

  • PDF

Fabricatiion and Characterization of ${Bi_2}{Sr_2}{CaCu_2}{O_8}$ Superconductor Thick Films on Cu Substrates using Cu-free Precursors (Cu-free 전구체를 이용하여 구리 기판 위에 ${Bi_2}{Sr_2}{CaCu_2}{O_8}$ 초전도 후막의 제조 및 특성)

  • 한상철;김상준;한영희;성태현;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.349-358
    • /
    • 2000
  • Fabrication and Characterization of Bi$_{2}$/Sr$_{2}$/CaCu$_{2}$/O$_{8}$(Bi2212) superconductor thick films were fabricated successfully on C tapes by liquid reaction between Cu-free precursors of Bi$_{x}$/SrCaO/$_{y}$(x=1.2-2) and Cu tapes. Cu-free Bi-Sr-Ca-O powder mixtures were screen-printed on Cu tapes and heat-treated at 850-87$0^{\circ}C$ for several minutes in air oxygen nitrogen and low oxygen pressure. In order to obtain the optimum heat-treatment condition we studied the effect of the precursor composition the printing thickness and the heat-treatment atmosphere on the superconducting properties of Bi2212 films and the reaction mechanism. Microstructures and phases of thick films were analyzed by films and the reaction mechanism. Microstructures and phases of thick films were analyzed by optical microscope and XRD. The electric properties of superonducting films were examined by the four probe method. At heat-treatment temperature the thick films were in a partially molten state by liquid reaction between CuO of the oxidized copper tape and the precursors which were printed on Cu tapes. During the heat-treatment procedure Bi2212 superconducting particle nucleate and grow in preferred orientations.ons.s.

  • PDF

Disintegration Mechanism of a Coaxial Porous Injector (동축형 다공성재 분사기의 분열 메커니즘)

  • Lee, Keonwoong;Kim, Dohun;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2016
  • In a coaxial porous injector, a gas propellant is injected through the porous cylinder surface to the liquid jet which is encircled by a porous cylinder. In this study, to observe the differences in disintegration mechanisms between a shear coaxial injector and a coaxial porous injector, cold-flow tests and 2-D axisymmetric numerical analysis have been carried out. The shadowgraph images and Sauter mean diameters were compared in similar experimental conditions, and the effects of velocity distributions at the inner injector region on the disintegration of liquid jet were investigated through the numerical calculations. As a result, in high air mass flow rate condition, the disintegration performance of coaxial porous injector is better than shear coaxial injector, in spite of a lower velocity at the inner injector region.