• Title/Summary/Keyword: Liquid activity coefficient model

Search Result 23, Processing Time 0.021 seconds

A Comparative Study on the Prediction of Vapor-Liquid Equilibria for the Ethanol-Benzene Mixture between Equation of State Model and Liquid Activity Coefficient Model (비이상적 상거동을 보이는 이성분계 혼합물의 기액 상평형 추산을 위한 상태방정식과 액체 활동도계수 모델 사이의 비교연구)

  • Cho, Jung-Ho;Lee, Ji-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1747-1753
    • /
    • 2010
  • In this study, a comparative study was performed to predict the vapor-liquid equilibria with maximum azeotropic pressure for ethanol-benzene binary system between an equation of state model and a liquid activity coefficient model. Peng-Robinson equation of state model with a Panatiotopoulos mixing rules (PRP) was used and NRTL liquid activity coefficient model proposed by Renon was selected. The PRP model, even though it has only two binary adjustable parameters, was not inferior to the NRTL model to predict vapor-liquid equilibria for low pressure region of ethanol-benzene system and showed a better prediction capability for high pressure region of ethanol-benzene system than the NRTL model with three binary interaction parameters.

A Modified Adsorption Model for Retention of Nonpolar Solutes in Reversed Phase Liquid Chromatography

  • Cheong Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.15-20
    • /
    • 1994
  • The adsorption model in reversed phase liquid chromatography has been critically examined. It has been found that use of the Everett type surface activity coefficient for the solute in the stationary phase is not useful to study the retention characteristics of a nonpolar solute. We suggest a modified model. In this model it is assumed that the displaced modifier molecules from the surface monolayer do not transfer into the bulk mobile phase but stick to the nonpolar solute which has displaced them. In addition, we prefer to use an apparent stationary phase activity coefficient of the soluie instead of the Everett type activity coefficient. This modified adsorption model well explains the mobile and stationary phase effects on the solute retention upon variation of mobile phase composition.

A Study on the Simulation of Toluene Recovery Process using Sulfolane as a Solvent (Sulfolane 용매를 이용한 톨루엔 회수공정의 모사에 관한 연구)

  • Cho, Jungho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, computer modeling and simulation works were performed to obtain nearly pure toluene product from toluene containing non-aromatic compounds using sulfolane as a solvent through an extractive distillation process. NRTL liquid activity coefficient model was adopted for phase equilibrium calculations and Aspen Plus release 12.1, a commercial process simulator, was used to simulate the extractive distillation process. In this study, it was concluded that the toluene product with a purity of 99.8 percent by weight and a recovery of 99.65 percent was obtained through an extractive distillation process.

Optimization of Extended UNIQUAC Parameter for Activity Coefficients of Ions of an Electrolyte System using Genetic Algorithms

  • Hashemi, Seyed Hossein;Dehghani, Seyed Ali Mousavi;Khodadadi, Abdolhamid;Dinmohammad, Mahmood;Hosseini, Seyed Mohsen;Hashemi, Seyed Abdolrasoul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.652-659
    • /
    • 2017
  • In the present research, in order to predict activity coefficient of inorganic ions in electrolyte solution of a petroleum system, we studied 13 components in the electrolyte solution, including $H_2O$, $CO_2$ (aq), $H^+$, $Na^+$, $Ba^{2+}$, $Ca^{2+}$, $Sr^{2+}$, $Mg^{2+}$, $SO_4$, $CO_3$, $OH^-$, $Cl^-$, and $HCO_3$. To predict the activity coefficient of the components of the petroleum system (a solid/liquid equilibrium system), activity coefficient model of Extended UNIQUAC was studied, along with its adjustable parameters optimized based on a genetic algorithm. The total calculated error associated with optimizing the adjustable parameters of Extended UNIQUAC model considering the 13 components under study at three temperature levels (298.15, 323.15, and 373.15 K) using the genetic algorithm is found to be 0.07.

Extractive Distillation Process for the Production of Highly Purified Ethanol from Aqueous Solution using Dimethyl Sulfoxide and Ethylene Glycol (Dimethyl Sulfoxide와 Ethylene Glycol을 이용하여 에탄올 수용액으로부터 고순도 에탄올을 생산하기 위한 추출증류공정)

  • Noh, Sang-Gyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.241-249
    • /
    • 2016
  • In this study, comparative work has been performed between two-columns and three-columns configurations for an extractive distillation process to produce highly purified ethanol with not less than 99.7 wt% using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as extracting agents. Optimal ethanol concentration at a concentrator top stream which minimized the total reboiler heat duties was determined for a three-columns configuration for two different solvents. For the thermodynamic model, NRTL liquid activity coefficient model was used and PRO/II with PROVISION 9.4 at Schneider electric company was utilized. DMSO was proved to be a better solvent than EG and three-columns configuration is better than two- columns configuration in the total utility consumptions since some of the liquid water contained in the feed stream was removed at a concentrator bottom liquid stream.

A Study on the Optimization of Process for Ethanol Dehydration Azeotropic Distillation (에탄올 탈수 공비 증류공정 최적화에 대한 연구)

  • Cho, Jungho;Jeon, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.474-481
    • /
    • 2005
  • In this study, modeling and optimization work were performed to obtain nearly pure anhydrous ethanol from aqueous ethanol mixtures using benzene as an entrainer. NRTL liquid activity coefficient model was adopted for phase equilibrium calculations and PRO/II with PROVISION 6.01, a commercial process simulator, was used to simulate the azeotropic distillation process. We used the total reboiler heat duties as an objective function and the concentration of ethanol at concentrator top as a manipulated variable. As a result, 76 mole percent of ethanol at concentrator top gave an optimum value which minimized the total reboiler heat duties of three distillation columns.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

Prediction of Lower Explosion Limits of Binary Liquid Mixtures by Means of Solution Thermodynamics (용액열역학에 의한 2성분계 혼합물의 폭발하한계 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Low explosion limits of flammable liquid mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult's law, van Laar equation and Wilson equation are shown to be applicable for the prediction of the lower explosion limits for ethylacetate+ethanol and ethanol+toluene systems. The calculated values based on Raoult's law were found to be better than those based on van Laar and Wilson equations.

  • PDF

Study on the Process Optimization for the Ethanol Scrubber (에탄올 스크러버의 공정 최적화에 대한 연구)

  • SANGGYUN NOH
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.410-414
    • /
    • 2024
  • In this paper, scrubber modeling and optimization works have been performed for the removal of ethanol contained in the feed nitrogen gas. Ethanol content at scrubber top gas stream was reduced to 20 ppm in mole by contacting counter-currently with water as a solvent. Some of the liquid withdrawn at the scrubber bottom stream has been recycled to the scrubber in order to reduce the amount of waste water.

Flash Point Calculation for n-Octane+n-Decane and n-Octane+n-Dodecane by UNIFAC Group Contribution Model (UNIFAC 그룹 기여 모델에 의한 n-Octnae+n-Decane 계와 n-Octane+n-Dodecane 계의 인화점 계산)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.86-91
    • /
    • 2015
  • The flash point is used to categorize inflammable liquids according to their relative flammability. Such a categorization is important for the safe handling, storage, and transportation of inflammable liquids. The flash point temperature of two binary liquid mixtures(n-octane+n-decane and n-octane+n-dodecane) has been measured for the entire concentration range using Seta-flash closed cup tester based on the ASTM D3278 method. The closed cup flash point temperature was estimated using the UNIFAC(Universal Functional Activity Coefficient) group contribution model. The experimentally derived flash point was also compared with the predicted flash point from the UNIFAC model. The UNIFAC model is able to estimate the flash point fairly well for n-octane+n-decane mixture and n-octane+n-dodecane mixture.