• Title/Summary/Keyword: Liquid Semen

Search Result 113, Processing Time 0.019 seconds

Effect of Production In Vitro Embryo with Frozen-thawed Semen using AndroMed Extender in Korean Black Cow Semen (AndroMed를 이용한 흑우 동결 정액으로 체외수정란 생산 효과)

  • Cho, Sang-Rae;Choi, Sun-Ho;Choe, Chang-Yong;Son, Jun-Kyu;Kim, Jae-Bum;Kim, Sung-Jae;Son, Dong-Soo;Kim, Hyun-Jong
    • Journal of Embryo Transfer
    • /
    • v.24 no.3
    • /
    • pp.207-212
    • /
    • 2009
  • The aim of present experiment was to examine commercial synthetic extender(AndroMed) for semen cryopreservation of Korean Black Bull. Semen was collected from a Korean Black Bull using an artificial vagina and transported to the laboratory. The semen was diluted 1:1 by AndroMed. The pellect was diluted to final sperm concentration of $5{\times}10^5/ml$ by doubling in every 10 minutes at $4^{\circ}C$ cold chamber. The semen was equilibrated for 1 hr at cold chamber and packed to 0.5 ml straw. The semen straws were located above 5 cm of liquid nitrogen for 5 minutes, above 5 cm for 10 minutes and above 10 cm for 10 min. And then the frozen straw was plunged to $LN_2$. The presented straws were examined the viability and motility after thawed at $37^{\circ}C$ water bath. Hanwoo semen was used as KPN (Korea Proven Bull Number) in this experiment. The survival rates was significantly higher in fresh semen than frozen semen ($80{\pm}14%\;and\;43{\pm}11%$). However, the motility rates was similar (80.7% and 66.4%). The survival and motility rates were higher in 5cm, 10 min treatment group than the other two groups in straw-located height and duration above $LN_2$ ($50{\pm}14%$ and 70.7% vs, 33.18% and $65{\pm}7%$ vs, 30.14% and 65.7%, respectively). The development rates to cleavage was higher in Black Cow than Hanwoo semen (62.2%, 64.4%), However, The development rates to blastocyst was higher in Hanwoo than Black cow semen (25.9%, 23.0%). In conclusion. The present results that acceptable fertilization and cryopreservation could be obtained by in vitro fertilization with frozen-thawed semen using a synthetic semen extender (AndroMed).

Artificial Insemination in Poultry (가금의 인공수정)

  • Howarth, Birkett
    • Korean Journal of Animal Reproduction
    • /
    • v.7 no.2
    • /
    • pp.57-71
    • /
    • 1983
  • 1. Diluted chicken semen can be preserved at 2 to 5$^{\circ}C$ for 24 to 48 hr with resultant fertility of greater than 90% of that of fresh semen. Turkey semen can be preserved at 10 to 15$^{\circ}C$ for 6 to 24 hr and provide economical fertility. 2. Frozen chicken semen has given variable results; a 21 to 93% fertility ranges as compared to 92 to 94% expected with fresh semen. Highest fertility levels obtained with frozen turkey semen intravaginally inseminated have been 61 and 63% using DMSO and glycerol, respectively, as cryoprotectants. 3. The use of glycerol as a cryoprotectant reauires that its concentration in semen be reduced to less than 2% either by dialysis or centrifugation after thawing and before intravaginal insemination if optimal fertility is to be obtained. 4. The temperature at which cryoprotectants are added to semen and the time allowed for equilibration are important for subsequent fertility pre- and post-freezing. 5. The type of container used for packaging the semen, freeze or cooling rates, thaw rates and level of cryoprotectant all interact in affecting cell survival. 6. Plastic freeze straws as a packaging device for semen offers the following advantages: easy to handle, require minimal storage space, offer a wide range of freeze and thaw rates, and insemination can be made directly from them upon thawing. 7. Controlled slow cooling rates of 1 to 8$^{\circ}C$/min have thus far provided the best results for cooling chicken semen throught the transition phase change (liquid to solid) or critical temperature range of +5 to -20 or -35$^{\circ}C$. 8. Highest fertilities have been achieved with frozen chicken semen where a slow thaw rate (2。 to 5$^{\circ}C$) has been used regardless of the freeze rate. 9. To maintain a constant high level of fertility throughout a breeding season with frozen semen, a higher absolute number of spermatozoa must be inseminated (2 to 3 times as many) as compared to fresh semen since a, pp.oximately 50% are destroyed during processing and freezing. 10. The quality of semen may vary with season and age of the male. Such changes in sperm quality could be accentuated by storage effects. Thus, the correct number of spermatozoa may very well vary during the course of a breeding period. 11. As to time of insemination, it is best to avoid inseminating chicken hens within 1-2 hr after or 3-5 hr before oviposition; and turkey hens during or 7-10 hr before oviposition. 12. The physiological receptiveness of the oviduct at the time of insemination is a very important biological factor influencing fertility levels throughout the breeding season.

  • PDF

Effects of Bacterial Contamination of Extended Boar Semen Preservation Periods on Embryo Production In Vitro (돼지 액상 정액의 보관일수에 따른 오염 정도가 체외 수정란 생산 효율에 미치는 영향)

  • Kim, Y.S.;Lee, H.T.;Kim, I.C.;Ryu, J.W.;Kim, C.W.;Chung, K.H.
    • Journal of Embryo Transfer
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2006
  • The objective of this study was to investigate the effects of preservation period of porcine liquid semen on bacterial contamination and in vitro production of embryo. Extended liquid semen was prepared by three mixture of boar's ejaculates from each farm without antibiotics, and were kept in $17^{\circ}C$ semen preservation incubator until use. Sperm motility was significantly (p<0.05) decreased as semen preservation time goes by (78.7$\pm$2.4% for 1 day vs. 71.1$\pm$2.4 and 64.8$\pm$2.4% for 3 and 5 days of presentation, respectively). Quantitative of bacteria in semen was significantly (p<0.05) higher in 5 days ($57.8\pm105.2\times10^4$ Cfu) compared to 0 and 3 days ($32.1\pm76.8\times10^4$ and $26.9\pm46.6\times10^4$ Cfu, respectively) of preservation. In terms of development of in vitro fertilization of porcine embryos inseminated by preserved semen, the rate of normal fertilization (2PN) was significantly (p<0.05) decreased in 5 days (56.0$\pm$2.6%) compared to 1 and 3 days (66.0$\pm$2.7 and 64.0$\pm$2.7%, respectively) of preservation. Cleavage rate was also significantly (p<0.05) affected by preservation period (75.0$\pm$4% for 1 day, 70.0$\pm$0.3 and 71.0$\pm$0.3% for 3 and 5 days, respectively). The in vitro developmental rate of blastocyst stage embryo was significantly (p<0.05) affected by semen preservation period (15.0$\pm$1.0% for 1 day vs. 11.0$\pm$0.9 and 8.0$\pm$0.9% for 3 and 5 days, respectively). It is concluded that more than 3 days of liquid semen preservation without antibiotics increased the quantity of bacteria resulted in detrimental effect on sperm motility and decreased both normal insemination rate and the developmental rate of blastocyst stage embryo.

Effects of Sugar Type on Viability of Frozen-Thawed Canine Spermatozoa

  • Lim, Y.H.;Son, J.M.;Shin, Y.J.;Kim, Y.S.;Lee, D.S.;Yoon, K.Y.;Shin, S.T.;Cho, J.K.
    • Journal of Embryo Transfer
    • /
    • v.23 no.4
    • /
    • pp.239-243
    • /
    • 2008
  • This study was conducted to investigate the effects of type of the sugar supplemented to the extender on the vigor, viability and intact acrosomal rates of frozen-thawed dog spermatozoa. The ejaculated semen was diluted with TRIS-citric acid extender containing 200mM TRIS, 73mM citric acid, 6% (v/v) glycerol, 20% (v/v) egg yolk, 1% (v/v) antibiotics (streptomycin/penicillin), 44 mM sugar, which was either glucose, fructose or glucose-fructose combination, and distilled water to make the final volume of 100ml. Extended semen samples were cooled at $4^{\circ}C$ for an hour, packaged in 0.25ml straws, equilibrated for 10 minutes in liquid nitrogen vapor, and frozen in liquid nitrogen. Samples were thawed by placing straws into $37^{\circ}C$ water for 120 seconds. After thawing, vigor, viability and intact acrosomal rates of frozen-thawed semen were compared according to type of sugar. No significant differences were observed between glucose and fructose groups. In addition, combination of the 2 sugars also did not show any significant differences in the vigor, viability and intact acrosomal rates. In conclusion, glucose and fructose were equally efficient as sugar supplements for freezing extender.

Study on Suitable Semen Additives Incorporation into the Extender Stored at Refrigerated Temperature

  • Bhakat, M.;Mohanty, T.K.;Raina, V.S.;Gupta, A.K.;Pankaj, P.K.;Mahapatra, R.K.;Sarkar, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1348-1357
    • /
    • 2011
  • The objective of this study was to compare the effect of Butylated Hydroxy Toluene (BHT), Pentoxifylline (PTX) and ${\alpha}$-tocopherol (Vit E) on semen quality parameters of Karan Fries bulls. The fortification of extender by various semen additives improves motility as well as fertility of spermatozoa. Split samples of 24 ejaculates of four Karan Fries bulls were extended in extender with or without various additives such as BHT, PTX and Vit E, and performance was evaluated at an interval of 0, 24, 48 and 72 h at refrigerated temperature (4-$7^{\circ}C$). Results of the present study revealed that addition of BHT, PTX and Vit E in extender improved sperm cell function, such as motility, viability, HOST, and acrosome integrity, as compared to the control during liquid storage up to 48 h of preservation at refrigerated temperature. There was no significant (p<0.05) difference between any of the additives up to 48 h of preservation. Overall, the results showed a significant (p<0.05) deterioration in motility after each storage interval. The results showed a significant deterioration in the acrosome integrity and plasma membrane integrity up to 48 h; subsequently, there was not much degradation of both the semen quality parameters. There was a significant increase in spermatozoal tail and total abnormality after each storage interval at refrigerator temperature (4 to $7^{\circ}C$); however, the head and mid-piece abnormalities were almost unaffected. Tail and total abnormality were least in extender fortified with BHT, PTX and Vit E at different hours of incubation as compared to the control. The addition of 1.5 mM BHT, 3.6 mM PTX and 1 mg/ml Vit E in the semen extender has more beneficial effect in terms of semen quality and preservability of spermatozoa.

Biological Activities of Phellinus linteus Mycelium Culture with Cassiae Semen Extract on β-Glucuronidase Inhibitory Activity (β-Glucuronidase 저해 활성이 우수한 결명자를 첨가한 상황 균사체 배양액의 생리활성)

  • Oh, Eun-Hee;Park, Jung-Mi;Kim, Sang-Hee;Song, In-Gyu;Han, Nam-Soo;Yoon, Hyang-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.620-628
    • /
    • 2012
  • We examined the effects of biological activity Phellinus linteus mycelium culture with cassiae semen extract. Firstly, the optimal temperature, initial pH and culture period for mycelial growth in a liquid culture of P. linteus were determined, and they were $30^{\circ}C$, pH 5.0 and 8 days respectively. The five herbal materials were examined against several health functional efficacies, and, as a result, Cassiae semen was chosen, with its superior inhibitory effects in ${\beta}$-glucuronidase inhibitory activity, electron donating activity, ACE inhibitory, and ${\alpha}$-glucosidase inhibitory activities(95.3%, 80.9%, 96.1 and 24.2%, respectively). P. linteus fruit body was investigated on ${\beta}$-glucuronidase inhibitory activity, electron donating activity, ACE inhibitory, and ${\alpha}$-glucosidase inhibitory activities, and they were 54.7%, 81.9%, 30.0% and 20.1%, respectively. Accordingly, C. semen was used in the following experiment, to give an additive functional effect on the P. linteus. As the amount of C. semen in the cultural media increased, mycelial weight and ${\beta}$-glucan contents also increased, but final pH was not influenced. In addition, the ${\beta}$-glucuronidase inhibitory activity, electron donating activity, and ${\alpha}$-glucosidase inhibitory activity increased. P. linteus mycelium culture showed higher activities in the other three tests above, except for electron donating activity, when C. semen was added to the medium before cultivation.

Effect of Extenders and Temperatures on Sperm Viability and Fertilizing Capacity of Harbin White Boar Semen during Long-term Liquid Storage

  • Zhou, J.B.;Yue, K.Z.;Luo, M.J.;Chang, Z.L.;Liang, H.;Wang, Z.Y.;Tan, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1501-1508
    • /
    • 2004
  • In this study the effect of extenders and temperatures on sperm viability and fertilizing capacity of boar sperm during long-term storage was investigated. Acrosomal integrity, membrane integrity, motility and hypo-osmotic resistance were evaluated by fluorescence and light microscopy. An in vitro fertilization test was performed to assess the fertilizing capacity of stored spermatozoa. The five diluents tested were ranked according to their ability to maintain sperm functional parameters and Zorlesco (ZO) extender with BSA or with PVA instead of BSA produced the best results. Zorlesco extender substituted with PVA (ZO+PVA) was found to maintain motility both at 15 and 20$^{\circ}C$. within 5 days of storage, but the quality of semen stored at 15$^{\circ}C$ decreased thereafter as compared to semen stored at 20$^{\circ}C$ Semen stored at 5$^{\circ}C$ demonstrated rapid loss of motility already within 24 h. Both fertilization and cleavage of semen stored at 20$^{\circ}C$ in ZO substituted with PVA instead of BSA did not change significantly until day 8 of storage. It is therefore concluded that PVA can be used to substitute for BSA and 20$^{\circ}C$ was more suitable than 15$^{\circ}C$ for boar semen storage, and in vitro fertilizing capacity of spermatozoa was maintained for at least 8 days in ZO+PVA at 20$^{\circ}C$.

Quantitative Analysis of Anthraquinones in Cassiae Semen by Processing Method (수치에 따른 결명자 주요 Anthraquinone의 함량분석)

  • Seo, Chang-Seob;Kim, Jung-Hoon;Shin, Hyeun-Kyoo;Hwang, Seock-Yeon;Kim, Byoung-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.200-208
    • /
    • 2014
  • In this study, we performed quantification determination of four major components including aurantio-obtusin, emodin, chrysophanol, and physcion in the 70% ethanol extracts of non-processed Cassiae Semen and processed Cassiae Semen using a high-performance liquid chromatography coupled with photodiode array detector. The analytical column for separation of the 4 constituents used a Gemini $C_{18}$ column kept at $40^{\circ}C$ by the gradient elution with 1.0% (v/v) acetic acid in water and 1.0% (v/v) acetic acid in acetonitrile as mobile phase. The flow rate was 1.0 mL/min and the injection volume was $10{\mu}L$. The amount of aurantio-obtusin, emodin, chrysophanol, and physcion in non-processed Cassiae Semen were 0.07%, 0.02%, 0.25%, and 0.10%, respectively. The amount of aurantio-obtusin, emodin, chrysophanol, and physcion in processed Cassiae Semen were 0.04-0.14%, 0.01-0.03%, 0.02-0.42%, and 0.01-0.24%, respectively. Consequently, the optimal processing condition of Cassiae Semen for the improvements of amounts of four anthraquinone compounds was obtained by roasting at $240^{\circ}C$ for 15 min.

Profiling of differentially expressed proteins between fresh and frozen-thawed Duroc boar semen using ProteinChip CM10

  • Yong-Min Kim;Sung-Woo Park;Mi-Jin Lee;Da-Yeon Jeon;Su-Jin Sa;Yong-Dae Jeong;Ha-Seung Seong;Jung-Woo Choi;Shinichi, Hochi;Eun-Seok Cho;Hak-Jae Chung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • Many studies have been conducted to improve technology for semen cryopreservation in pigs. However, computer-assisted analysis of sperm motility and morphology is insufficient to predict the molecular function of frozen-thawed semen. More accurate expression patterns of boar sperm proteins may be derived using the isobaric tags for relative and absolute quantification (iTRAQ) technique. In this study, the iTRAQ-labeling system was coupled with liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify differentially expressed CM10-fractionated proteins between fresh and frozen-thawed boar semen. A total of 76 protein types were identified to be differentially expressed, among which 9 and 67 proteins showed higher and lower expression in frozen-thawed than in fresh sperm samples, respectively. The classified functions of these proteins included oxidative phosphorylation, mitochondrial inner membrane and matrix, and pyruvate metabolic processes, which are involved in adenosine triphosphate (ATP) synthesis; and sperm flagellum and motile cilium, which are involved in sperm tail structure. These results suggest a possible network of biomarkers associated with survival after the cryopreservation of Duroc boar semen.

Effect of L-carnitine on sperm quality during liquid storage of boar semen

  • Yang, Kang;Wang, Na;Guo, Hai-Tao;Wang, Jing-Ran;Sun, Huan-Huan;Sun, Liang-Zhen;Yue, Shun-Li;Zhou, Jia-Bo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1763-1769
    • /
    • 2020
  • Objective: This study was conducted to investigate the effect of L-carnitine on the pig semen characteristics during storage. Methods: Spermatozoa samples were examined for spermatozoa quality and then randomly divided into 5 groups: 0 (control), 12.5, 25, 50, and 100 mM L-carnitine. Sperm motility, plasma membrane integrity and antioxidant parameters (total reactive oxygen species, total antioxidant capacity, and malondialdehyde) were evaluated after 0, 3, 5, and 10 day cooled-storage at 17℃. Moreover, ATP content, mitochondria activity as well as sperm-binding and in vitro fertilizing ability of preserved boar sperm were also investigated. Results: Supplementation with 50 mM L-carnitine could effectively maintain boar sperm quality parameters such as sperm motility and membrane integrity. Besides, we found that L-carnitine had positive effects on boar sperm quality mainly through improving antioxidant capacities and enhancing ATP content and mitochondria activity. Interestingly, by assessing the effect of L-carnitine on sperm fertility and developmental potential, we discovered that the extender containing L-carnitine could improve sperm quality and increase the number of sperms bounding to zona pellucida, without improving in vitro fertility and development potential. Conclusion: These findings suggested that the proper addition of L-carnitine to the semen extender improved boar sperm quality during liquid storage at 17℃.