• Title/Summary/Keyword: Liquid Propulsion Rocket

Search Result 683, Processing Time 0.019 seconds

Propellant utilization system on liquid-fuelled rocket (액체추진 발사체의 추진제 소진시스템)

  • Cho, Kie-Joo;Lim, Seok-Hee;Jung, Young-Suk;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.203-206
    • /
    • 2006
  • We have studied, for maximizing the total impulse of liquid propulsion system, Propellant Utilization System (PUS) to minimize outage of propellant. Propellant outage is mainly influenced by propellant mixture ratio during flight and real quantity of loaded propellant. If one employs cryogenic propellant, the variation of propellant density due to the temperature change has major effect on outage control. Feedback control of propellant level of each tank during flight could deplete both tanks simultaneously. To introduce this system, however, the mixture ratio control system of rocket engine is necessary.

  • PDF

Performance Characteristics of a Main Oxidizer Shutoff Valve for Liquid Rocket Engines (액체로켓엔진용 연소기 산화제 개폐밸브 성능 특성)

  • Jeong, Daeseong;Hong, Moongeun;Han, Sangyeop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.28-35
    • /
    • 2017
  • A main oxidizer shutoff valve controls the supply of the oxidizer flow into the combustion chamber of a liquid rocket engine. This shutoff valve also carries out the pre-chilling of oxidizer supply lines by permitting recycling flow for stable transient start of the engine. In the present paper, the flow tests for the recycling line of the valve were conducted in order to evaluate the cooling performance of the main oxidizer shutoff valve. In addition, cryogenic life-cycle tests were performed with an assumption of the increase of spring constant with increasing valve operating times due to ductile-brittle transition effects.

Dynamic Behavior of Liquid Propellant in Reusable Rocket Vehicle

  • Himeno, Takehiro;Nonaka, Satoshi;Naruo, Yoshihiro;Inatani, Yoshifumi;Watanabe, Toshinori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.687-692
    • /
    • 2004
  • For the prediction of sloshing in the propellant tank of rocket vehicle utilized in RVT (reusable rocket vehicle testing) conducted by ISAS/JAXA, the flow field in the propellant tank during the ballistic flight was experimentally reproduced with the sub-scale model of it. The lateral acceleration as large as about 0.8 G was provided with a mechanical exciter and the deformation of liquid surface in the vessel was visualized with a high-speed camera. The several con-figurations of damping devices were installed and tested in the vessel, which should keep the ullage gas away from the outlet port. It was consequently suggested that the combination of a baffle plate and a perforated cylinder could be effective against the gas suction before the re-ignition of the engine. The sloshing phenomena were also simulated with the CFD code, called CIP-LSM. The numerical results showed good agreement with the corresponding data obtained in the experiment.

  • PDF

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.

Rocket Engine Test Facility Improvement for Hot Firing Test of 75 ton-f Class Gas Generator and Cold Flow Test (75톤급 가스발생기 연소시험을 위한 시험장 개선 및 수류시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.29-33
    • /
    • 2009
  • On the basis of the development experience of a gas generator for the 30 ton-f thrust liquid rocket engine combustor a Subscale Ground Firing Test Facility was designed and fabricated for a gas generator for the 75 ton-f thrust liquid rocket engine combustor. The Subscale Ground Firing Test Facility developed is going to be used to develop 75 ton-f class gas generator. Acquired data and test technique from this facility will be used to develope the high performance liquid rocket engine combustor and the Ground Firing Test Facility. This report describes the improved Subscale Ground Firing Test Facility for 75 ton-f class gas generator and results of the cold flow test.

  • PDF

Development of High-Pressure Subscale Thrust Chamber for Verifying Core Technology for KSLV-II Performance Enhancement (한국형발사체 성능 고도화 핵심기술 검증을 위한 고압 축소형 연소기 개발)

  • Kim, Jonggyu;Kim, Seong-Ku;Joh, Miok;Ryu, Chulsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • In this study, a high-pressure subsacle thrust chamber was developed to verify the core technology for KSLV-II performance enhancement. The core technologies are the design of an injector for high-pressure combustion, development of a combustion stabilization device using the additive manufacturing technique, and the design and fabrication of mixing head and regeneratively cooled combustion chamber. The core technologies, which have been verified through the development of high-pressure subscale thrust chamber, will be used to develop large engine liquid rocket engine thrust chamber in the future.

Numerical Study of Acoustic Coupling between Combustion Chamber and Resonators in Liquid Rocket Engine (로켓엔진 연소기와 공명기간의 선형 음향 coupling에 관한 수치적 연구)

  • Park I-Sun;Sohn Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.407-410
    • /
    • 2005
  • Acoustic coupling between combustion chamber and gas-liquid scheme injectors are studied numerically in liquid rocket engine adopting linear acoustic analysis. The injectors can play a role as half-wave resonators. The combustion chamber with numerous injectors shows peculiar acoustic coupling with the injectors. As the injector length approaches a half wavelength or the original tuning length, new injector-coupled acoustic modes show up in the chamber and thereby, the acoustic-damping effect of the tuned injectors is appreciably degraded.

  • PDF

Acoustic-Damping Characteristics of Half-Wave Resonator in a Combustion Chamber of Liquid Rocket Engine (로켓엔진 연소기에서 반파장 공명기의 음향감쇠에 관한 수치적 연구)

  • Sohn Chae-Hoon;Park I-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.9-15
    • /
    • 2005
  • A linear acoustic analysis is performed to explore the characteristics of acoustic damping by a gas-liquid scheme coaxial injector in a liquid rocket engine. The injector can play a role of acoustic resonator. Acoustic-damping characteristics of half-wave resonator are compared with those of quarter-wave resonator. Various effects of the boundary absorption coefficient, injector length and sound speed in combustion chamber and resonator are investigated. As a result, short tuning length of resonator and low sound speed of the medium have a favorable effect on acoustic damping. As the boundary absorption coefficient decreases, the tuning range of the resonator length becomes narrower.

Combustion of PMMA in Liquid Oxygen Flow

  • Mitsutani, Toru;Ro, Takaaki;Yuasa, Saburo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.180-185
    • /
    • 2004
  • Our previous study showed that although the hybrid rocket engine with swirling gaseous oxygen had high performance, a direct injection of LOX with swirl into the combustion chamber of the hybrid rocket engine lowered the performance of the engine, compared to that with gaseous oxygen. In order to clarify this reason, combustion tests of a small PMMA combustor with an inner port diameter of 2 mm were conducted in liquid oxygen flow by comparison with gaseous oxygen flow. Although the oxygen mass fluxes of LOX were about two orders of magnitude larger than those of gaseous oxygen, the fuel regression rate of LOX were remarkably smaller than those of gaseous oxygen. For both liquid and gaseous oxygen, diffusion flames in the port of the grain controlled the combustion process of PMMA in oxygen flow. These results may be explained by the fact that only small amount of LOX vaporized and consumed in the combustion with PMMA while flowing through the port due to relatively larger latent heat of injected liquid oxygen compared to the heat of release by combustion which depended on the burning surface area of PMMA.

  • PDF

System Analysis of the Liquid Rocket Engine with Staged Combustion Cycle (단계식 연소 사이클 액체로켓엔진의 시스템 해석)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Yoo, Seung-Young;Oh, Seok-Hwan;Roh, Tae-Seoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.46-51
    • /
    • 2012
  • This study aims to develop the performance analysis program on the staged combustion cycle of the liquid rocket engine using liquid oxygen(LOx) as oxidizer, liquid hydrogen(LH2) and RP-1 as fuel. The developed analysis program can obtain the propellant mass flow rate, the specific impulse, and representative design values of engine components for the required thrust satisfying pressure, mass flow, and energy balance conditions. The analysis results show that the the specific impulses (Isp) compared to those of the real engines have been less than 1%. With additional constraints, the program will be improved for the system optimization.

  • PDF