• Title/Summary/Keyword: Liquid Nitrogen Storage

Search Result 113, Processing Time 0.031 seconds

Efficient Cryopreservation of in vitro Grown Shoot Tips of Pear (Pyrus spp.) by Droplet-vitrification

  • Jae-Young Song;Jinjoo Bae;Ji-Won, Han;Ho Cheol Ko;Ho-sun Lee;Sung-Hee Nam;Jung-RoLee;Byeong Hyeon Yun;Keumsun Kim;Kyungho Won;Il Sheob Shin
    • Korean Journal of Plant Resources
    • /
    • v.36 no.6
    • /
    • pp.571-579
    • /
    • 2023
  • In this study, cryopreservation by droplet-vitrification was applied to pear (Pyrus spp.) germplasm. We focused on the development and assessment of various strategies for the selection of suitable tissue, osmoprotection, and dehydration. We also evaluated post-thaw recovery of cryopreserved explants by droplet-vitrification. Preferentially, we tested the effects of preculture and loading treatments to determine which tissues were more suitable, either the apical shoot tips or the axillary buds. Apical shoot tips showed the better regrowth rate than in vitro axillary buds. The most effective techniques for cryopreservation were as follows. Shoots from in vitro seedlings which had been cultured for about 5-6 weeks were cold-hardened at 4℃ for one week, excised shoot tips were precultured on liquid MS medium including 0.3 M sucrose for 31 hours and 0.7 M sucrose for 17 hours, osmoprotected in loading solution (LS) for 40 min, and then cryoprotected in dehydration solution (PVS3) for 90 min. In addition, we found that regrowth rates of explants on regrowth medium after exposure to liquid nitrogen (LN) were higher than those on MS medium. Results indicated that the highest regrowth percentage was 95.6% for 'Bartlett' cultivar and 68.9% for 'BaeYun No.3' cultivar. Consequently, apical shoot tips of two pear cultivars, 'Bartlett' (P. communis) and 'BaeYun No.3' (P. pyrifolia), were successfully cryopreserved by droplet-vitrification. Results of this study show that the enhanced droplet-vitrification method described in the present study could be used as an effective means for long-term storage of pear genetic resources.

Evaluation of vitrification for cryopreservation of teeth

  • Dissanayake, Surangi C.;Che, Zhong-Min;Choi, Seong-Ho;Lee, Seung-Jong;Kim, Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.111-118
    • /
    • 2010
  • Purpose: The aim of this study was to investigate whether vitrification in the cryopreservation of periodontal ligament (PDL) cells could be useful for tooth banking. Methods: In step 1, primary cultured human PDL cells were cryopreserved in 100% conventional cryopreservation media and 100% vitrification media (ESF40 media) in different temperatures for 2 weeks. In step 2, a series of modified vitrification formulae named T1 (75% vitrification media + 25% F-media), T2 (50% vitrification media + 50% F-media) and T3 (25% vitrification media + 75% F-media) were used to store PDL cells for 2 weeks and 4 weeks in liquid nitrogen. MTT assay was performed to examine the viability of PDL cells. Results: Maximum cell viability was achieved in cells stored in 100% conventional cryopreservation media at $-196^{\circ}C$ (positive control group) in step 1. Compared to the positive control group, viability of the cells stored in 100% vitrification media was very low as 10% in all test conditions. In step 2, as the percentage of vitrification media decreased, the cell viability increased in cells stored for 2 weeks. In 4-week storage of cells in step 2, higher cell viability was observed in the T2 group than the other vitrification formulae while the positive control group had the highest viability. There was no statistically significant difference in the cell viability of 2-week and 4-week stored cells in the T2 group. Conclusions: These observations indicate 100% vitrification media is not successful in PDL cell cryopreservation. Conventional cryopreservation media is currently the most appropriate media type for this purpose while T2 media would be interesting to test for long-term storage of PDL cells.

Cryopreservation of the Entomopathogenic Namatode, Steinernema carpocapsae Weiser (곤충병원선충(Steinernema carpocapsae Weiser)의 냉동저장법)

  • 이승화;김용균;한상찬
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.149-152
    • /
    • 2000
  • Cryopreservation of infective juveniles of entomopathogenic nematode, Steinernema carpocapsae Weiser, was conducted at $-190^{\circ}C$ liquid nitrogen and its, efficacy was analysed on nematode survival and pathogenicity with glycerol pretreatments and storage periods. Infective juveniles were pre-treated before being frozen by incubating the nematodes in 22% glycerol for each of 6, 12, and 24 h, followed by 70% methanol at $0^{\circ}C$ for 10 minutes. Just after glycerol and methanol incubations, subsamp1es of the nematodes were resuspended in 0.85% saline and maintained during 24h for viability determination. Different glycerol incubation periods significantly affected the nematode susceptibility to methanol infiltration. Six hour incubation in glycerol resulted in much less nematode survival than did 12 h or 24 h incubation. About 70% of the infective juveniles frozen at $-190^{\circ}C$ for 5 months, preincubat-ed in glycerol at least for 12h, were able to survive after being resuspended in 30°C saline. They did not also show any change in their pathogenicity during cryopreservation. These results suggest an improved technique for long-term storage of the entomopathogenic nematodes.

  • PDF

Studies on Cryopreservation of D-shaped and Umbo Larvae of Arkshel1(Scapharca broughtonii)

  • K.H. Kang;K. H. Kho;Z.T. Chen;Kim, Y.H.;Kim, J.M.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.72-72
    • /
    • 2003
  • The present study examined the possibility of cryopreservation of the D-shaped and umbo larvae of arkshell (Scapharca broughtonii), in terms of the survival rates after freezing and thawing. D-shaped and umbo larvae of arkshells were obtained from a shellfish farming on Yosu city. The average shell lengths were $93.3 \pm 10.1 \mu$m and $201.7 \pm 13.5 \mu$, respectively. Five cryoprotectants (CPAs), dimethyl sulfoxide (DMSO), glycerol, ethylene glycol (EG), propylene glycol (PG), and methanol, were tested at the concentrations of 1.5, 2.0 and 2.5 M. After larvae suspended in CPAs, cryoprotectants were loaded in 0.5 ml straws at a larval density of 50-100 larvae per straw, and epuilibrated for 10 and 20 minute at room temperature ($23^{\circ}C$), repectively. Straws were cooled at a rate of $1^{\circ}C$/min from $0^{\circ}C$ to $-12^{\circ}C$, held for 5 min at $-12^{\circ}C$, and then cooled at $2^{\circ}C$/min to $-35^{\circ}C$ and equilibrated for 5 min followed by plunging in liquid nitrogen. After storage in liquid nitrogen for 1 day, straws were thawed in a $30^{\circ}C$ water. As soon as straws were observed to melt, larvae were diluted with an equal volume of ASW and then washed twice with a large volume of ASW at an interval of 2 min to unload the CPAs. The results showed that after equilibration for 10 and 20 minute at room temperature, no larvae survived using methanol as CPAs, and it was observed that larval shells all open slightly, and larval flesh broke down and slopped over the shells. The highest survival rates (D-shaped larvae: 77.6%, umbo larvae: 59.3%) were obtained with 2M DMSO, and 1.5M glycerol yielded survival rates of 53.8% for D-shaped larvae and 37.5% for umbo larvae. The surviving D-shaped larvae showed active rotary motion and perfect membrane integrity and cytoplasmic normality, and the vigorous movement of veliger cilia was observed inside the closed shells. The breakdown of tissue occurred in the abnormal larvae, and the isolated cell often run out of shells.

  • PDF

Design and Economic Analysis of Low Pressure Liquid Air Production Process using LNG cold energy (LNG 냉열을 활용한 저압 액화 공기 생산 공정 설계 및 경제성 평가)

  • Mun, Haneul;Jung, Geonho;Lee, Inkyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.345-358
    • /
    • 2021
  • This study focuses on the development of the liquid air production process that uses LNG (liquefied natural gas) cold energy which usually wasted during the regasification stage. The liquid air can be transported to the LNG exporter, and it can be utilized as the cold source to replace certain amount of refrigerant for the natural gas liquefaction. Therefore, the condition of the liquid air has to satisfy the available pressure of LNG storage tank. To satisfy pressure constraint of the membrane type LNG tank, proposed process is designed to produce liquid air at 1.3bar. In proposed process, the air is precooled by heat exchange with LNG and subcooled by nitrogen refrigeration cycle. When the amount of transported liquid air is as large as the capacity of the LNG carrier, it could be economical in terms of the transportation cost. In addition, larger liquid air can give more cold energy that can be used in natural gas liquefaction plant. To analyze the effect of the liquid air production amount, under the same LNG supply condition, the proposed process is simulated under 3 different air flow rate: 0.50 kg/s, 0.75 kg/s, 1.00 kg/s, correspond to Case1, Case2, and Case3, respectively. Each case was analyzed thermodynamically and economically. It shows a tendency that the more liquid air production, the more energy demanded per same mass of product as Case3 is 0.18kWh higher than Base case. In consequence the production cost per 1 kg liquid air in Case3 was $0.0172 higher. However, as liquid air production increases, the transportation cost per 1 kg liquid air has reduced by $0.0395. In terms of overall cost, Case 3 confirmed that liquid air can be produced and transported with $0.0223 less per kilogram than Base case.

Sampling and Cryogenic Pulverization and Storage of Environmental Samples and Improvement of Operating Procedures in National Environmental Specimen Bank (국가환경시료은행 시료 채취, 분쇄, 저장과 개선방안 고찰)

  • Lee, Jangho;Lee, Jongchun;Kim, Myungjin;Han, Areum;Lee, Eugene;Bade, Rabindra;Kim, Minsung
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.6
    • /
    • pp.823-839
    • /
    • 2012
  • Environmental Specimen Banks (ESBs) are playing pivotal role in monitoring the effect of environmental pollution on the ecosystem based on the retrospective analysis of the representative samples collected regularly and stored in cryogenic condition. In Korea, National Environmental Specimen Bank (NESB) was established in 2009 and the standard operating procedures (SOPs) for sampling, and cryogenic milling and storage had been prepared during 2007-2010. Since then, the tentative SOPs for the seven kinds of specimens (shoots of Red Pine (Pinus densiflora) and Korean Pine (Pinus koraiensis), leaves of Mongolian Oak (Quercus mongolica) and Zelkova Tree (Zelkova serrata), eggs of Feral Pigeon (Columba livia var. domestica), muscles and organs of Common Carp (Cyprinus carpio), and Freshwater Bivalve (Unio (Nodularia) douglasiae)) have been put to test in the field and laboratory as well against the practicality and feasibility. The SOPs were improved by reflecting the findings from the research and the following discussion regarding the selection of specimen (Feral Pigeon suffering from a control management), sample size (a problem of decreasing number of sampling trees related to increasing sampling time) and period (a problem related to a bud growth), and sampling methods etc.. In addition, barcoding system for the management of the specimen information, and monitoring system of the cryogenic storage to regulate the optimum temperature and the liquid nitrogen level were also developed for the efficient and effective control of the samples. Lastly, the safety guide and emergency protocol were augmented to guarantee a safe work environment with the cryogenic facility. These improvements of the SOPs are expected to contribute to more stable operation of the NESB.

Thermal analysis of LNG storage tank for LNG bunkering system (LNG 벙커링용 고효율 LNG 저장탱크 열해석)

  • Yun, Sang-kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.876-880
    • /
    • 2015
  • In 2016, the IMO's new rules for an 80% reduction in NOx emissions in newly built ships will necessitate the use of LNG as a clean fuel. So far, the developed European countries have led the development of LNG bunkering ships and related facilities. An LNG bunkering system stores LNG in a horizontal or vertical IMO "C"-Type tank insulated with perlite powder, and a vacuum in the annular space between the double walls, like the cryogenic liquid nitrogen tank. Current storage tanks have high heat leakage, evaporating over 2.0% daily, and are difficult to build with the required vacuum. A more efficiently insulated storage tank could reduce the evaporation rate. This research carried out thermal analysis on a new effective insulation method that separates high vacuum in the annular space between two tanks with a solid insulation material, such as urethane foam, lining the outer vessel. This highly efficient insulation system obtained an evaporation rate of 0.03% per day under a $10^{-3}torr$ vacuum, and an evaporation rate of 0.11% at $10^{-45}torr$. Even if the space loses its vacuum, the new insulation system showed a lower evaporation rate of 4.12% than the present perlite system of 4.9%. This newly developed tank can increase the efficiency of LNG storage tank and may help keep LNG bunkering systems safe.

Quality Stability of Instant Powdered Soup using Canned Oyster Processing Waste Water (굴통조림 부산물 유래 인스턴트 분말 수프의 품질안정성)

  • KIM Jin-Soo;Heu Min-Soo;HEU Min-Soo;CHO Moon-Lae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.389-393
    • /
    • 2001
  • For an effective utilization, quality stability of instant powdered oyster soup made of canned oyster processing waste water (IPSW) was determined. Instant powdered soup from oyster hot-water extracts (IPSE) was also prepared by mixing hot-water extract powder (15 g) with table salt (5 g), cream powder (19 g), milk replacer (12 g), wheat flour (20 g), corn flour (15 g), starch (5 g), glucose (7.5 g) and onion powder (1.5 g). In preparing IPSW, mixed powder from wash water and boiling liquid waste, instead of powder from hot-water extracts and table salt, was added (powder from boiling liquid waste: powder from wash water= 12: 8) and other additives were added in proportion to those in the IPSE. The moisture content, water activity, peroxide value and fatty acid composition showed little changes during storage of the IPSW. The pH, volatile basic nitrogen content and brown pigment formation increased slightly, while white index decreased slightly during storage of IPSW. No significant difference was observed in the changes of food component during storage between IPSW and IPSE. According to a sensory evaluation, the change in quality of IPSW was negligible during 12 months of storage. from the results of the chemical experiment and sensory evaluation, IPSW packed with laminated film bag (OPP, $20{\mu}m/PE,\;20{\mu}m/paper,\;45g/m^3/PE,\;20{\mu}\;m/Al,\;7{\mu}\;m/PE,\;20{\mu}m$) was revealed to be preserved in good quality during 12 months of storage.

  • PDF

Rational budgeting approach as a nutrient management tool for mixed crop-swine farms in Korea

  • Reza, Arif;Shim, Soomin;Kim, Seungsoo;Ahn, Sungil;Won, Seunggun;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1520-1532
    • /
    • 2020
  • Objective: Due to rapid economic return, mixed crop-swine farming systems in Korea have become more intensive. Intensive farming practices often cause nutrient surpluses and lead to environmental pollution. Nutrient budgets can be used to evaluate the environmental impact and as a regulatory policy instrument for nutrient management. This study was conducted to select a nutrient budgeting approach applicable to the mixed crop-swine farms in Korea and suggest an effective manure treatment method to reduce on-farm nutrient production. Methods: In this study, we compared current and ideal gross nutrient balance (GNB) approaches of Organisation for Economic Co-operation and Development and soil system budget (SSB) approach with reference to on-farm manure treatment processes. Data obtained from farm census and published literature were used to develop the farm nutrient budgets. Results: The average nitrogen (N) and phosphorus (P) surpluses were approximately 11 times and over 7 times respectively higher in the GNB approaches than the SSB. After solid-liquid separation of manure, during liquid composting a change in aeration method from intermittent to continuous reduced the N and P loading about 50% and 47%, respectively. Although changing in solid composting method from turning only to turning+aeration improved the N removal efficiency by 30.5%, not much improvement in P removal efficiency was observed. Conclusion: Although the GNB approaches depict the impact of nutrients produced in the mixed crop-swine farms on the overall agricultural environment, the SSB approach shows the partitioning among different nutrient loss pathways and storage of nutrients within the soil system; thus, can help design sustainable nutrient management plans for the mixed cropswine farms. The study also suggests that continuous aeration for liquid composting and turning+aeration for solid composting can reduce nutrient loading to the soil.

Investigation of ground condition charges due to cryogenic conditions in an underground LNG storage plant (지하 LNG 저장 시험장에서 극저온 환경에 의한 지반상태 변화의 규명)

  • Yi Myeong-Jong;Kim Jung-Ho;Park Sam-Gyu;Son Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.67-72
    • /
    • 2005
  • To investigate the feasibility of a new concept of storing Liquefied Natural Gas (LNG) in a lined hard rock cavern, and to develop essential technologies for constructing underground LNG storage facilities, a small pilot plant storing liquid nitrogen (LN2) has been constructed at the Korea Institute of Geoscience and Mineral Resources (KIGAM). The LN2 stored in the cavern will subject the host rock around the cavern to very low temperatures, which is expected to cause the development of an ice ring and the change of ground condition around the storage cavern. To investigate and monitor changes in ground conditions at this pilot plant site, geophysical, hydrogeological, and rock mechanical investigations were carried out. In particular, geophysical methods including borehole radar and three-dimensional (3D) resistivity surveys were used to identify and monitor the development of an ice ring, and other possible changes in ground conditions resulting from the very low temperature of LN2 in the storage tank. We acquired 3D resistivity data before and after storing the LN2, and the results were compared. From the 3D images obtained during the three phases of the resistivity monitoring survey, we delineated zones of distinct resistivity changes that are closely related to the storage of LN2. In these results, we observed a decrease in resistivity at the eastern part of the storage cavern. Comparing the hydrogeological data and Joint patterns around the storage cavern, we interpret this change in resistivity to result from changes in the groundwater flow pattern. Freezing of the host rock by the very low temperature of LN2 causes a drastic change in the hydrogeological conditions and groundwater flow patterns in this pilot plant.