• Title/Summary/Keyword: Liquid Manure

Search Result 272, Processing Time 0.026 seconds

Eliminating Waste : Strategies for Sustainable Manure Management - Review -

  • Richard, T.L.;Choi, H.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1162-1169
    • /
    • 1999
  • Modern livestock production facilities face both challenges and opportunities with respect to sustainable manure management practices. Nutrient recycling is constrained by the size of modern livestock operations, the low nutrient density of liquid manures, and the spatial and temporal variability of manure nutrient concentrations. These constraints can and must be addressed or farmers will be increasingly drawn to nutrient wasting strategies such as anaerobic lagoons, wetlands, and other systems designed to treat and discharge nutrients to the environment. Intentional discharge of nutrients is difficult to justify in a sustainable agricultural production system, since replacing those nutrients through chemical fertilization requires considerable expenditure of energy. In contrast, there are several currently viable technologies which provide the homogenization and stabilization needed to successfully compete against chemical fertilizers, including composting, pelletization, and anaerobic digestion. Some of these technologies, particularly anaerobic digestion and composting, also open up increased opportunities to market the energy and nutrients in manure to non-agricultural uses. Future advances in biotechnology are likely to demonstrate additional options to transform manure into fuels, chemicals, and other non-agricultural products.

The Effect of Thatch Decomposing by Application with Composted Liquid Manure and Microorganism Medium in Golf Course Soil (배양미생물과 가축분뇨발효액비의 시비가 골프코스 토양 중 대취분해에 미치는 영향)

  • Ham, Suon Kyu;Lim, Ji Yeon;Lee, Yeong Min
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.342-346
    • /
    • 2014
  • The purpose of this experiment is for investigating how much the amino acid liquid fertilizer and composted liquid manure, culture microorganism effect on the breeding of grasses and knowing the extent of the thatch content through an analysis of the soil. For testing about soil chemical, the quality of grasses, and the extent of the thatch content in the soil, we cultivated 6 kinds of microorganisms having the effect of thatch dissolution and sprayed these 6 microorganisms with composted liquid manure and the amino acid liquid fertilizer on the place Creeping bentgrass have planted. This conduction started from June to October, 2012 and 2013 (The interval: 2 weeks). In the result of the turf growth, there is no big difference between soil chemical and trace element. And we can know Leaf Color Index, Chlorophyll Index and Root Length are almost same as among treatment. In conclusion, the mixing fertilization of culture microorganism and composted liquid manure is better effective than the traditional fertilization. And it can be expected the effect of the quality of grass and Thatch decomposition in soil.

Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure (돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정)

  • Son, Bo-Kyoon;Gang, Seong-Gu;Jo, Eun-Ju;Kim, Shin-Do;Lee, Chang-Ju;Kim, Jeong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.73-79
    • /
    • 2006
  • Aeration is the most important and indispensable operation unit for the treatment of swine manure using aerobic liquid-composting process. The composting of swine manure depends on biological treatment process, but the highly concentrated ammonia nitrogen is required a pretreatment to expect the appropriate efficiency of the biological treatment process. In this study, pilot experiments have been carried out to estimate of the fit condition about ammonia stripping process as a pretreatment to aerobic liquid- composting. pH adjustment with $Ca(OH)_2$ was economically superior to use of NaOH and optimum pH of ammonia stripping was 12.3, ammonia nitorgen was rapidly removed as pH were increased at $$35^{\circ}C$$. When air stripping is performed before aerobic liquid-stripping, a high initial pH is required for complete ammonia removal and is additional effects such as organic substances, phosphorus, turbidity, and color removal. Stripping process was very efficient in the pretreatment of highly concentrated ammonia nitrogen for composting of swine manure. Emission rate of gaseous ammonia was $0.5355mole\;s^{-1}$ at initial time and $0.0253mole\;s^{-1}$ at finitial time. The fit condition of ammonia stripping in this study were at the temperature of $$35^{\circ}C$$, and the pH of 12.3 during 48 hours.

Effect of SCODMn and pH Adjustment on Physicochemical Characteristics in Liquid Fertilizer Production Process Using Swine Manure (SCODMn 농도 및 pH 조정이 양돈분뇨의 후숙발효과정에 미치는 이화학적 영향)

  • Hong, In-Gi;Kim, Soo-Ryang;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.13-20
    • /
    • 2012
  • This research investigated the effect of $SCOD_{Mn}$ concentrations and pH adjustment at the stage before land application, namely 2nd-aeration treatment stage of liquid fertilizer in the liquid fertilizer treatment process of swine manure on the physicochemical compositions of 2nd-aeration treated liquid fertilizer. The liquid fertilizer used in this research is the alkaline fermented liquid fertilizer of swine manure more than pH 9.0 through aeration treatment (Alkaline fermentation treatment group). About the alkaline liquid fertilizer, phosphate neutralization treatment was conducted with phosphoric acid and it was a phosphate neutralization treatment group. In 2nd-aeration treatment of liquid fertilizer for 30 days, each group was divided into alkaline treatment groups (T-1, T-2, and T-3) and phosphate neutralization treatment groups (T-4, T-5, and T-6) according to early $SCOD_{Mn}$ concentrations. The research results are as follows. 1. As for $SCOD_{Mn}$ reduction rate, the average 29.9% in alkaline treatment groups and the average 36.9% in phosphate neutralization treatment groups were shown and so the relatively high reduction rate was shown in phosphate neutralization treatment groups. 2. After finishing the experiment, the group of the lowest $SCOD_{Mn}$ concentrations was the phosphate neutralization treatment group, T-6 with the lowest inflow concentrations. In case the final goal level of 2nd-aeration treated liquid fertilizer is assumed as concentrations less than $SCOD_{Mn}$ 3,000 ppm, it would be desired that inflow concentrations of 2nd-aeration treatment groups are adjusted less than $SCOD_{Mn}$ 5,500 ppm. 3. As for the persistence rate of nitrogen, the average 29.3% in alkaline treatment groups and the average 38.9% in phosphate neutralization treatment groups were shown and so phosphate neutralization treatment groups showed the relatively low loss rate of nitrogen, meanwhile, in the case of T-P, phosphate neutralization treatment groups maintained high concentrations (average 1,473 ppm). 4. In the event of 2nd-aeration treatment of liquid fertilizer, "alkaline fermentation treatment" condition in 'low phosphate-low nitrogen' type and "phosphate neutralization treatment" condition in 'high phosphate-high nitrogen' type are expected to be favorable.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

Growth Response of Eggplant (Solanum melongena L.) Using Balanced Manure Nutrients Supply by Fertigation Culture (가축분뇨 맞춤비료를 이용한 관비재배가 가지 (Solanum melongena L.) 재배에서 가지 작물의 생육 반응)

  • Ryoo, Jong-Won;Jung, Keon-Su;Kim, Sang-Min;Seo, Man-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.2
    • /
    • pp.269-279
    • /
    • 2018
  • The present study was conducted to evaluate fertigation effects of balanced manure nutrients from combined fertilizers on the growth of eggplant (Solanum melongena L.) and soil chemical properties in greenhouse cultivation. There are 4 treatments for fertigation; animal liquid manure (LM), LM supplemented with chemical ferilizer (LM+CF) to make nutrient-balanced ferilizer, LM supplemented with chemical ferilizer and phosphorus acid (LM+CF+PA), and conventional chemical fertilzer (CCF). Fruit lenth, width, and weight for LM treatment were significantly lower than LM+CF, LM+CF+PA, and CCF treatments. There was no significant differences in fruit length, width, and weight among LM+CF, LM+CF+PA, and CCF treatments. The yield of eggplants per plant for LM treatment (26.2 kg) was decreased by 6% compared to CCF treatment (27.9 kg). The growth and yield of eggplants were not significant different among CCF, LM+CF, and LM+CF+PA treatments. The marketable yield for LM treatment was lowest among 4 treatments and that for LM+CF+PA treatment (26.6 kg) was increased by 8% compared to CCF treatment (24.1 kg). The chemical properties of the soil for CCF treatment, in general, tended to be higher compared to the other treatments. In conclusion, the present study demonstrates that the application of balanced liquid manure combined with mineral fertilizer to soil is considered as a good management practices because it improves, eggplant quality and soil properties.

Effect of Liquid Manure Source, Application Rate and Time on Agronomic Characteristics and Forage Yield of Winter Rye (가축분뇨의 종류, 시비량 및 시비시기가 호밀의 생육특성과 생산성에 미치는 영향)

  • Park, Jin-Gil;Kim, Jong-Duk;Kwon, Chan-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.227-232
    • /
    • 2006
  • This experiment was conducted to evaluate the effect of liquid manure source, application rate and time on the agronomic characteristics and forage yield of winter rye. The experimental design was a randomized complete block design. The treatments were : CFB150=chemical fertilizer(CF) 150 N as basal, CFS150=CF 150 N as split application (75+75), SLB150=swine liquid (SL) 150 N as basal, SLS150=SL 150 N as split application (75+75), SLB300=SL 300 N as basal, SLS150=SL 300 N as split application(150+150), CLB150=cattle liquid (CL) 150 N as basal, CLS150=CL 150 N as split awlication(75+75), CLB300=CL 300 N as basal, CLS150=CL 300 N as split application(150+150). Heading date of the plant was observed on the 17th of April fur both chemical fertilizer and swine liquid, and on the 16th of April for cattle liquid. Stay green of chemical fertilizer was higher than others because of high crude protein content. Leaf was darker in high nitrogen fertilizer treatments than low N treatments. However lodging resistance was poor as nitrogen fertilizer was increased. Dry matter (DM) content of rye at chemical fertilizer was lower than liquid manure. DM yield of chemical fertilizer treatments were highest among the fertilizer source. However, DM yield of rye with application was all most same at different N application methods. The crude protein (CP) content and yield for chemical fertilizer was significantly higher than liquid manure. CP yield using split application was higher by 16% and 28%, compared to basal application. Based on the results of this study, forage production of liquid manure was lower, compared to chemical fertilizer. And split application was superior to basal application forage and protein yields, and high protein.

Design of Real-Time Monitoring System for Recycling Agricultural Resourcing Based on USN

  • Ji, Geun-Seok;Min, Byoung-Won;Oh, Yong-Sun;Mishima, Nobuo
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.22-29
    • /
    • 2013
  • In this paper, we propose a integrated real-time monitoring system for recycling agriculture resourcing based on USN. We design and implement the monitoring system so that we can integrate the quality control of farmyard and liquid manures, barn environment monitoring, and positioning information control into a total management system performing recycling of excrement and manure. Selection of sensors and sensor-node construction and requirements, structure of wire/wireless communication networks, and design of monitoring program are also presented. As a result of operating our system, we can get over various drawbacks of conventional separated system and promote the proper circulation of excrement up to the farmyard. We confirm that these advanced effects arise from the effective management of the total system integrating quality control of farmyard/liquid manure, barn/farmhouse information, and vehicle moving monitoring information etc. Moreover, this monitoring system is able to exchange real-time information throughout communication networks so that we can construct a convenient information environment for agricultural community by converging IT technology with farm and stockbreeding industries. Finally we present some results of processing using our monitoring system. Sensing data and their graphs are processed in real-time, positioning information on the v-world map offers various moving paths of vehicles, and statistical analysis shows all the procedure from excrement occurrence to recycling and resourcing.

Forage Yields of Corn-Oats Cropping System and Soil Properties as Affected by Liquid Cattle Manure (옥수수-연맥조합의 사초수량과 토양특성에 미치는 소 액상분뇨)

  • Shin, D.E.;Kim, D.A.;Park, G.J.;Kim, J.D.;Park, H.S.;Kim, S.G.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.4
    • /
    • pp.325-332
    • /
    • 1999
  • A manure management plan is important for all dairy operations. This experiment was conducted to determine the effect of different nitrogen(N) application rates of liquid cattle manure on the forage quality, N recovery, and total forage yields of corn-oats cropping system and soil properties at the National Livestock Research Institute, RDA, Suweon in 1997. Eight treatments consisting of no fertilizer, chemical fertilizer $320kg\;N\;ha^{-1}$ as urea, the continuous applications of 320, 640 and $960kg\;N\;ha^{-1}$ as liquid cattle manure(LCM), the residual effects of 200, 400 and $600kg\;N\;ha^{-1}$ as liquid cattle manure were arranged in a randomized complete block design with three replications. Mean plant height of fall sown oats was 70 and 61cm at the continuous application and the residual effect plots, respectively. Mean dry matter percent of fall sown oats at the residual effect plots was higher by 0.9% than that of oats at the continuous application plots, but there were no differences among all treatments. Mean crude protein(CP), acid detergent fiber(ADF), and neutral detergent fiber (NDF) contents of fall sown oats at the continuous application plots were higher by 1.0, 1.6, and 3.1%, respectively, than those of the residual effect plots. Also, there were significant differences among treatments (P<0.05). Total forage dry matter yields of corn and oats cropping system were ranged from 11,365 to $25,668kg\;ha^{-1}$ among the treatments. The yield was orderly ranked as LCM $960kg\;N\;ha^{-1}$ > LCM $600kg\;N\;ha^{-1}$ > LCM $640kg\;N\;ha^{-1}$ > LCM $400kg\;N\;ha^{-1}$ (P<0.05). Compared with the control, manurial value(MV) was 158 and 139% for the plot of the LCM $960kg\;N\;ha^{-1}$ and that of the LCM $600kg\;N\;ha^{-1}$, respectively. N recovery percent of fall sown oats was the highest at the plot of the LCM $200kg\;N\;ha^{-1}$ by 50%, and then was higher in order of the LCM $400kg\;N\;ha^{-1}$, LCM $600kg\;N\;ha^{-1}$, and LCM $320kg\;N\;ha^{-1}$. Contents of exchangeable cation in the soil of the residual effect plots was higher than that of the continuous application plots. These results suggest that the LCM $600kg\;N\;ha^{-1}$ may be the most effective in total forage dry matter yields, manurial value, N recovery, and utilizing liquid manure N under the corn and oats double cropping system.

  • PDF