• Title/Summary/Keyword: Liquid Liquid Extraction

Search Result 1,075, Processing Time 0.025 seconds

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Etodolac in Human (에토돌락 체내동태 연구를 위한 혈청 중 에토돌락의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Moon, Jai-Dong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.265-271
    • /
    • 2005
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of etodolac in human serum was developed, validated, and applied to the pharmacokinetic study of etodolac. Etodolac and internal standard, ibuprofen were extracted from human serum by liquid-liquid extraction with hexane/isopropanol (95:5, v/v) and analyzed on a Luna C18(2) column with the mobile phase of 1% aqueous acetic acid-acetonitrile (4:6, v/v). Detection wavelength of 227 nm and flow rate of 1.0 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed etodolac concentration $(1\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-40\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of serum was 0.05 ${\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.00 to 110.00% for etodolac with overall precision (% C.V.) being 1.08-10.11%. The percent recovery for human serum was in the range of 76.73-115.30%. Stability studies showed that etodolac was stable during storage, or during the assay procedure in human serum. The peak area and retention time of etodolac were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of etodolac in human serum samples for the pharmacokinetic studies of orally administered Lodin XL tablet (400 mg as etodolac) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Fenoprofen in Human (페노프로펜 체내동태 연구를 위한 혈청 중 페노프로펜의 HPLC 정량법 개발 및 검증)

  • Cho, Hye-Young;Kang, Hyun-Ah;Kim, Yoon-Gyoon;Sah, Hong-Kee;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.423-429
    • /
    • 2005
  • A selective and sensitive reversed-phase HPLC method for the determination of fenoprofen in human serum was developed, validated, and applied to the pharmacokinetic study of fenoprofen calcium. Fenoprofen and internal standard, ketoprofen, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Luna C18(2) column with the mobile phase of acetonitrile-3 mM potassium dihydrogen phosphate (32:68, v/v, adjusted to pH 6.6 with phosphoric acid). Detection wavelength of 272 nm and flow rate of 0.25 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed fenoprofen concentration $(2\;{\mu}g/mL)$ with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of $0.05-100\;{\mu}g/mL$ with correlation coefficients greater than 0.999. The lower limit of quantification using 1 mL of serum was $0.05\;{\mu}g/mL$, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 92.27 to 109.20% for fenoprofen with overall precision (% C.V.) being 5.51-11.71 %. The relative mean recovery of fenoprofen for human serum was 81.7%. Stability (freeze-thaw, short and long-term) studies showed that fenoprofen was not stable during storage. But, extracted serum sample and stock solution were allowed to stand at ambient temperature for 12 hr prior to injection without affecting the quantification. The peak area and retention time of fenoprofen were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of fenoprofen in human serum samples for the pharmacokinetic studies of orally administered Fenopron tablet (600 mg as fenoprofen) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Pentoxifylline in Human Serum (체내동태 연구를 위한 혈청 중 펜톡시필린의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Yoo, Hee-Doo;Lee, Hwa-Jeong;Moon, Jai-Dong;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.2
    • /
    • pp.89-95
    • /
    • 2006
  • A selective and sensitive reversed-phase HPLC method for the determination of pentoxifylline in human serum was developed, validated, and applied to the pharmacokinetic study of pentoxifylline. Pentoxifylline and internal standard, chloramphenicol, were extracted from the serum by liquid-liquid extraction with dichloromethane and analyzed on a Luna CI8(2) column with the mobile phase of acetonitrile-0.034 M phosphoric acid (25:75, v/v, adjusted to pH 4.0 with 10 M NaOH). Detection wavelength of 273 nm and flow rate of 0.8 mL/min were used. This method showed linear response over the concentration range of 10-500 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of the serum was 10 ng/mL, which was sensitive enough for pharmacokinetic studies of pentoxifylline. The overall accuracy of the quality control samples ranged from 89.3 to 92.7% for pentoxifylline with overall precision (% C.V.) being 4.1-9.2%. The relative mean recovery of pentoxifylline for human serum was 105.8%. Stability (stock solution, short and long-term) studies showed that pentoxifylline was not stable during storage. But three freeze-thaw cycles and extracted serum samples were stable. This method showed good ruggedness (within 15% C.V.) and was successfully applied for the analysis of pentoxifylline in human serum samples for the pharmacokinetic studies of orally administered $Trental^{\circledR}$ tablet (400 mg pentoxifylline), demonstrating the suitability of the method.

Validation of an LC/MS/MS Method for the Pharmacokinetic Study of Lercanidipine (염산레르카니디핀 체내동태 연구를 위한 혈청 중 레르카니디핀의 LC/MS/MS 정량법 검증)

  • Kim, Se-Mi;Kim, Hwan-Ho;Shin, Sae-Byeok;Kang, Hyun-Ah;Yoon, Hwa;Cho, Hea-Young;Kim, Yoon-Gyoon;Yang, Chan-Woo;Yong, Chul-Soon;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.223-227
    • /
    • 2007
  • A rapid, simple and sensitive LC/MS/MS method for the determination of lercanidipine in human serum was validated and applied to the pharmacokinetic study of lercanidipine. Lercanidipine and internal standard, amlodipine, were extracted from human serum by liquid-liquid extraction with hexan-isoamyl alcohol (100: 1, v/v) and analyzed on a $Symmetry^{(R)}$ MS $C_{18}$ column with the mobile phase of acetonitrile-0.2% aqueous formic acid (70: 30, v/v). Using MS/MS with multiple reaction monitoring (MRM) mode, lercanidipine and amlodipine were detected without severe interferences from human serum matrix. Lercanidipine produced a protonated precursor ion ($[M+H]^+$) at m/z 612.3 and a corresponding product ion at m/z 280.0. Internal standard produced a protonated precursor ion ($[M+H]^+$]) at m/z 409.0 and a corresponding product ion at m/z 238.0. The ruggedness of this method was investigated using quality control (QC) samples. This method showed linear response over the concentration range of 0.05-20 ng/mL with correlation coefficient greater than 0.999. The lower limit of quantitation using 0.5 mL of serum was 0.05 ng/mL, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the developed method ranged from 85.51 to 112.2% for lercanidipine with overall precision (% C.V.) being 3.56-13.1%. This method showed good ruggedness (within 15% C.V.) and was successfully applied for the analysis of lercanidipine in human serum samples for the pharmacokinetic studies, demonstrating the suitability of the method.

Trace-level Determination of N-nitrosodimethylamine(NDMA) in Water Samples using a High-Performance Liquid Chromatography with Fluorescence Derivatization (HPLC와 Fluorescence Derivatization 기법을 이용한 극미량 NDMA의 수질분석)

  • Cha, Woo-Suk;Fox, Peter;Nalinakumari, Brijesh;Choi, Hee-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • High-performance liquid chromatography(HPLC) and fluorescence derivatization were applied for a trace-level N-nitrosodimethylamine(NDMA) analysis of water samples. Fluorescence intensity was optimized with the excitation wavelength of 340 nm and the emission wavelength of 530 nm. pH adjustment after denitrosation was necessary to get a maximum intensity at pH between 9 and 12. Maximum intensity was found with a dansyl chloride concentration of 330 to 500 mg/L. Percentile error in the water sample analyses through solid phase extraction was 12-162% and 6-23% for the lower concentration level(10-200 ng/L NDMA) and the higher level(100-1000 ng/L NDMA), respectively, showing more discrepancy in lower level. However, the average ratios of estimated NDMA to the standard NDMA were close to 1 for both concentration ranges, presenting this HPLC method could detect from tens to hundreds nanograms NDMA per liter. Accurate determination of NDMA, which was injected to a wastewater effluent, revealed the selectivity of fluorescence derivatization for the target compound(NDMA) in the presence of complex interfering compounds. The HPLC with fluorescence derivatization may be applicable for determining NDMA of water and wastewater samples fur various research purposes.

Antioxidant, Anti-wrinkle and Whitening Effect of Fermented Extracts of Hwangryunhaedoktang (황련해독탕 발효물의 항산화, 항주름 및 미백 효과)

  • Um, Ji Na;Min, Jin Woo;Joo, Kwang Sik;Kang, Hee Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • Hwangryunhaedoktang (HHT) has been traditionally used as a preventive and therapeutic medicine to treat enervation and diverse chronic diseases. This study was designed to compare the antioxidant, anti-wrinkle and whitening effects of HHT extract and its fermented extract by Leuconostoc mesenteroides (FHHT). FHHT was prepared by inoculation of L. mesenteroides after the extraction procedure with 70% ethanol. HHT and FHHT was investigated via high-performance liquid chromatography (HPLC). Simultaneous qualitative analysis of two bioacitive components, berberine and palmatine. was achieved by comparing their retention times ($t_R$) and UV spectra with those of the standard components. Cell viability test results indicated that both HHT and FHHT were non-toxic. In DPPH radical scavenging ability, $SC_{50}$ values of the FHHT was $68.85{\mu}g/mL$, which is more effective than HHT. Moreover, FHHT showed higher expression in production of procollagen type I than HHT. In nontoxic concentration range, FHHT showed strong melanin production inhibitory effect in ${\alpha}-melanocyte$ stimulating hormone (${\alpha}-MSH$)-stimulated B16F10 cell ($IC_{50}=9.82{\mu}g/mL$). These results suggested that fermented extracts of hwangryunhaedoktang had considerable potential as a cosmetics ingredient with an antioxidant and anti-wrinkle and whitening effects.

Multiple Determinations of Trichloroethylene Metabolites in a Concurrent Biological Media using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry (HPLC-MS/MS를 이용한 트리클로로에틸렌 대사산물의 다중 분석법 확립)

  • Ahn, Youngah;Kho, Younglim;Lee, Seungho;Shin, Mi-Yeon;Jeon, Jung Dae;Kim, Sungkyoon
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.114-126
    • /
    • 2014
  • Objectives: We aimed to develop a measurement method of five metabolites of trichloroethylene (TCE) in a concurrent biological sample, e.g., trichloroacetic acid (TCA), dichloroacetic acid (DCA), S-(1,2-dichlorovinyl) glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) and to validate the method before application to pharmacokinetic study. Methods: TCE metabolites were simultaneously analyzed using high performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) with as little as 50 ${\mu}L$ of serum and urine. DCA, TCA and NAcDCVC were extracted with diethyl ether, while DCVC and DCVG were extracted by solid phase extraction. This method was validated according to the guidelines for bioanalytical method validation of the Korean National Institute of Toxicological Research. Then, we determined the five metabolites in five strains of mice at 24 hr after exposure to 1 g TCE /kg body weight. Results: The limits of detection for the five metabolites in biological samples ranged from 0.001 to 0.076 nmol/mL, which is comparable to or better than those previously reported. Most calibration curves showed good linearity ($R^2=0.99$), and between-batch variation was less than 20% expressing acceptable robustness and reproducibility. Using this method, we found TCA and DCA were detected in all test mice at 24 hr after the oral administration while NAcDCVC and DCVC were detected in some strains, which showed strain-dependent metabolism of TCE. Conclusions: The present method could provide robust and accurate measurements of major key metabolites of TCE in biological media, which allowed concurrent analysis of TCE metabolism for limited amounts of biospecimens.

Changes of Volatile Components in Alaska Pollack Sik-hae during Low-Temperature Fermentation (전통 명태식해 저온숙성 중 휘발성 성분의 변화)

  • Cha, Yong-Jun;Jeong, Eun-Jeong;Kim, Hun;Lee, Young-Mi;Cho, Woo-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.566-571
    • /
    • 2002
  • Volatile flavor compounds in Alaska pollack sik-hae during fermentation at 5$^{\circ}C$ were analyzed by liquid-liquid continuous extraction (LLCE) and gas chromatography/mass spectrometry (GC/MS) methods. Sixty five volatile compounds were detected in Alaska pollack sik-hae during fermentation. These compounds were composed mainly of 11 S-containing compounds, 13 alcohols, 13 acids, 4 aldehydes, 4 ketones, 6 terpenes,4 aromatic compounds and 10 miscellaneous compounds. Among these, 9 S-containing compounds (3-(methylthio)-1-propene, dimethyl disulfide, diallyl sulfide, methylallyl disulfide, methyl-(E) -propenyl disulfide, dimethyl trisulfide, 2 diallyl disulfide isomers and diallyl trisulfide), 2 acids (acetic acid and butanoic acid), 2 ketones (2, 3-butanedione and 6-methyl-5-hepten-2-one) and 2 esters (ethyl formate and ethyl acetate) were significantly increased during fermentation (p<0.05), and these compounds were suspected to affect on the odor of Alaska pollack sik-hae.

Development and Validation of an HPLC Method for the Pharmacokinetic Study of Dipyridamole in Human (디피리다몰 체내동태 연구를 위한 혈청 중 디피리다몰의 HPLC 정량법 개발 및 검증)

  • Cho, Hea-Young;Kang, Hyun-Ah;Moon, Jae-Dong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of dipyridamole in human serum was developed, validated, and applied to the pharmacokinetic study of dipyridamole. Dipyridamole and internal standard, loxapine, were extracted from human serum by liquid-liquid extraction with diethyl ether and analyzed on a Nova Pak $C_{I8}$ column with the mobile phase of 40 mM ammonium acetate:methanol:acetonitrile (35:35:30)(v/v/v, pH 7.8). Detection wavelength of 280 nm and flow rate of 1.0 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^3$ factorial design using a fixed dipyridamole concentration (50 ng/mL) with respect to its peak area and retention time. And also, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 2-2000 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 0.5 mL of serum was 2 ng/mL, which was sensitive enough for pharmacokinetic studies of dipyridamole. The overall accuracy of the quality control samples ranged from 103.94 to 105.86% for dipyridamole with overall precision (% C.V.) being 4.60-11.49%. The relative mean recovery of dipyridamole for human serum was 97.64%. Stability studies showed that dipyridamole was stable during storage, or during the assay procedure in human serum. The peak area and retention time of dipyridamole were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of dipyridamole in human serum samples for the pharmacokinetic studies of orally administered Dimor tablet (75 mg as dipyridamole) at three different laboratories, demonstrating the suitability of the method.

Development and Validation of HPLC Method for Pharmacokinetic Study of Promethazine in Human (염산프로메타진 체내동태 연구를 위한 혈청 중 프로메타진의 HPLC 정량법 개발 및 검증)

  • Cho, Hae-Young;Kang, Hyun-Ah;Lee, Hwa-Jeong;Choi, Hoo-Kyun;Lee, Yong-Bok
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • A rapid, selective and sensitive reversed-phase HPLC method for the determination of promethazine in human serum was developed, validated, and applied to the pharmacokinetic study of promethazine. Promethazine and internal standard, chlorpromazine, were extracted from human serum by liquid-liquid extraction with n-hexane containing 0.8% isopropanol and analyzed on a Capcell Pak CN column with the mobile phase of acetonitrile-0.2 M potassium dihydrogen phosphate (42:58, v/v, adjusted to pH 6.0 with 1 M NaOH). Detection wavelength of 251 nm and flow rate of 0.9 mL/min were fixed for the study. The assay robustness for the changes of mobile phase pH, organic solvent content, and flow rate was confirmed by $3^{3}$ factorial design using a fixed promethazine concentration (10 ng/mL) with respect to its peak area and retention time. In addition, the ruggedness of this method was investigated at three different laboratories using same quality control (QC) samples. This method showed linear response over the concentration range of 1-40 ng/mL with correlation coefficients greater than 0.999. The lower limit of quantification using 1 mL of serum was 1 ng/mL, which was sensitive enough for pharmacokinetic studies. The overall accuracy of the quality control samples ranged from 96.15 to 105.40% for promethazine with overall precision (% C.V.) being 6.70-11.22%. The relative mean recovery of promethazine for human serum was 63.54%. Stability (freeze-thaw and short-term) studies showed that promethazine was stable during storage, or during the assay procedure in human serum. However, the storage at $-80^{\circ}C$ for 4 weeks showed that promethazine was not stable. Extracted serum sample and stock solution were not allowed to stand at ambient temperature for 12 hr prior to injection. The peak area and retention time of promethazine were not significantly affected by the changes of mobile phase pH, organic solvent content, and flow rate under the conditions studied. This method showed good ruggedness (within 15% C.V.) and was successfully used for the analysis of promethazine in human serum samples for the pharmacokinetic studies of orally administered Himazin tablet (25 mg as promethazine hydrochloride) at three different laboratories, demonstrating the suitability of the method.