• 제목/요약/키워드: Liquid Electrolyte

검색결과 259건 처리시간 0.027초

정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석 (A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid)

  • 김태진
    • KSBB Journal
    • /
    • 제4권2호
    • /
    • pp.150-156
    • /
    • 1989
  • 안정상태 일차원적 모델을 이용하여 막으로 덮힌 상업적인 산소 적극의 특성을 공기포화된 식염수에서 연구하였다. 전극은 세 개의 층으로 이루어져 있는데. 이는 외부 농도 경계층(용액), 반투성 막, 내부 전해질 용액 층으로 구분된다. 정체용액에서, 물은 외부 용액층으로부터 내부 전해질 용액쪽으로 열역학적 평형을 이룰 때까지 이동한다. 한편 유동 용액에서, 불은 수력학적 압력차 때문에 전해질 층의 두께가 막의 두께와 같아질 때까지 반대방향으로 이동한다.

  • PDF

Photovoltaic Performance of Dye-sensitized Solar Cells assembled with Hybrid Composite Membrane based on Polypropylene Non-woven Matrix

  • Choi, Yeon-Jeong;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권2호
    • /
    • pp.605-608
    • /
    • 2011
  • Hybrid composite membranes were prepared by coating poly(ethylene oxide) and $SiO_2$ particles onto the porous polypropylene nonwoven matrix. Gel polymer electrolytes prepared by soaking the hybrid composite membranes in an organic electrolyte solution exhibited ionic conductivities higher than $1.1{\times}10^{-3}Scm^{-1}$ at room temperature. Dyesensitized solar cell (DSSC) employing the hybrid composite membrane with PEO and 10 wt % $SiO_2$ exhibited an open circuit voltage of 0.77 V and a short circuit current of 10.78 $mAcm^{-2}$ at an incident light intensity of 100 $mWcm^{-2}$, yielding a conversion efficiency of 5.2%. DSSC employing the hybrid composite membrane showed more stable photovoltaic performance than that of the DSSC assembled with liquid electrolyte.

네오디뮴 산화물의 전해환원시 전해질로서 빙정석의 특성 (Characteristics of Cryolite as an Electrolyte for Reduction of Nd$_2$O$_3$)

  • 남상욱;백영현
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.82-86
    • /
    • 1993
  • An attempt was made to reduce directly Nd2O3 in a cryolited based fluoride bath. Neodymium metal was electrodeposited on the iron cathode to produce the Fe-Nd eutectic alloy in a liquid state at 90$0^{\circ}C$. Graphite was adopted for the anode and pure iron for the cathode. Electrolyte was composed of Na3AlF6 50wt.%. AlF3 34wt.% and Nd2O3 16wt.%. Analysis of typical alloy product showed Al 63.4wt.% Fe 26.9wt.% and Nd 7.0 wt.% The enrichment of neodymium in the alloy couldn't be obtained because aluminum codeposited with ne-odydmium. Experimental results proved that the cryolited based electrolyte was unstable for the electrolysis of rare earth oxides even though their prominent solubilities.

  • PDF

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성 (Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

고분자 전해질 연료전지 유로의 수분배출 특성의 실험 및 해석적 평가 (Experimental and Numerical Assessment of Liquid Water Exhaust Performance of Flow Channels in PEM Fuel Cells)

  • 김현일;남진현;신동훈;정태용;김영규
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.85-92
    • /
    • 2009
  • Polymer electrolyte membrane (PEM) fuel cells are a promising technology for short-term power generation required in residential and automobile applications. Proper management of water has been found to be essential for improving the performance and durability of PEM fuel cells. This study investigated the liquid water exhaust capabilities of various flow channels having different geometries and surface properties. Three-pass serpentine flow fields were prepared by patterning channels of 1 mm or 2 mm width onto hydrophilic Acrylic plates or hydrophobic Teflon plates, and the behaviors of liquid water in those flow channels were experimentally visualized. Computational fluid dynamics (CFD) simulations were also conducted to quantitatively assess the liquid water exhaust capabilities of flow channels for PEM fuel cells. Numerical results showed that hydrophobic flow channels have better liquid water exhaust capabilities than hydrophilic flow channels. Flow channels with curved corners showed less droplet stagnation than the channels with sharp corners. It was also found that a smaller width is desirable for hydrophobic flow channels while a larger width is desirable for hydrophilic ones. The above results were explained as being due to the different droplet morphologies in hydrophobic and hydrophilic channels.

The modification of materials for flexible Dye-Sensitized Solar Cells

  • Kim, Chang-Ho;Han, In-Young;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1560-1563
    • /
    • 2009
  • We fabricated Dye-Sensitized Solar Cells(DSSCs) which are modified by using liquid crystals(LCs) and electro-deposition on cathode electrode in order to apply to flexible DSSCs. We deposited Pt metal layers on ITO electrode through the method of electro-deposition process during low-temperature. We could expect the long-term stability by using ionic liquid(IL) and liquid crystals(LCs). We can also see the enhancement of efficiency through orientation of LCs in gel-state electrolyte using liquid crystals at the DSSCs.

  • PDF

초소형 주사 시스템의 모의 혈관 내에서의 작동 시험 (In Vitro Test of a Micro Syringe Fabricated for the Intravascular Injection)

  • 김근영;심우영;이상우;양상식;장준근;이승기
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권6호
    • /
    • pp.307-313
    • /
    • 2001
  • A micro syringe which can be attached to the end of a micro intravascular endoscope for drug injection is fabricated and its characteristic is tested. The syringe consists of a drug chamber and an actuator chamber which are separated by a silicone rubber membrane. The drug chamber is filled with liquid drug by the membrance actuation caused by the vaporization and condensation of the working liquid in the actuator chamber. The liquid drug is ejected by the electrolysis of the working liquid. The membrane deflection by each actuation method has been measured. The liquid ejection image has been captured during the electrolysis of the electrolyte. Also, the successful operation of the micro syringe under the normal blood pressure was verified.

  • PDF

Starch-g-PAN 고분자 전해질막 합성 및 플렉서블 고체 슈퍼 캐퍼시터 응용 (Synthesis of Starch-g-PAN Polymer Electrolyte Membrane and Its Application to Flexible Solid Supercapacitors)

  • 민효준;정주환;강미소;김종학
    • 멤브레인
    • /
    • 제29권3호
    • /
    • pp.164-172
    • /
    • 2019
  • 본 연구에서는 녹말(starch)과 poly(acrylonitrile) (PAN)으로 이루어진 가지형 공중합체 기반의 슈퍼 캐퍼시터용 전해질막을 손쉽게 제조하는 방법을 제시하였다. 가지형 공중합체(starch-g-PAN)는 세륨 이온에 의해 개시된 자유 라디칼 중합을 통해 합성되었다. 실온에서 어떠한 유기용매 없이 Starch-g-PAN 고분자를 이온성 액체, 1-ethyl-3-methylimidazolium dicyanamide (EMIM DCA)에 용해하였으며 1시간 동안 $100^{\circ}C$의 고온을 가해줌으로써 손쉽게 고분자 막을 만들었다. 제조된 막은 유연하여 플렉서블 고체 슈퍼 캐퍼시터의 전해질에 적용되었다. Starch-g-PAN 기반의 고분자 전해질막을 사용한 슈퍼 캐퍼시터는 0.5 A/g의 전류 밀도에서 약 21 F/g의 정전용량을 가졌으며 10,000 사이클 동안 86%의 유지율을 보이며 높은 주기 안정성을 보였다. 본 연구를 통해 starch-g-PAN 기반의 고분자 전해질막이 우수한 성능을 가진 플렉서블 고체 슈퍼 캐퍼시터에 응용될 수 있음을 확인하였다.

COIN형 리튬 폴리머전지의 충방전 특성

  • 박수길;박종은;손원근;이흥기;김상욱;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.497-500
    • /
    • 1997
  • Conducting polymer is new material in lithium secondary battery. conducting polymer has a lot of merit which is flexible and good handing so that this material is used battery system, solid polymer electrolytes airs used PEO(Polyethylene oxide) and PEO/PMMA branding material adding by liquid plasticizer or lithium salt polymer electrolyte which is added liquid plasticizer, lithium salt decreased the crystallity and thermal stability is over than 13$0^{\circ}C$. it is very useful tn apply lithium secondary battery system.

  • PDF

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • 박익재;박상백;김주성;진경석;홍국선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF