• 제목/요약/키워드: Liquid Electrolyte

검색결과 257건 처리시간 0.031초

고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구 (Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs))

  • 최민욱;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

무가습 고온 PEFC용 이온성 액체 및 산이 함유된 복합막의 특성 (Characteristics of composite membranes containing ionic liquid and acid for anhydrous high temperature PEFCs)

  • 백지숙;박진수;박승희;양태현;박구곤;임성대;김창수;설용건
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.378-378
    • /
    • 2009
  • The ionic liquid-based sulfonated hydrocarbon composite membranes was prepared for use in anhydrous high temperature-polymer electrolyte fuel cells (HT-PEFCs). Ionic liquid behaves like water in the composite membranes under anhydrous condition. However the composite membranes show a low conductivity and high gas permeability as the content of ionic liquid increases due to its high viscosity and content of ionic liquid, respectively. Hence, in order to enhance the proton conductivity and to reduce the gas permeability of the composite membranes with low content of ionic liquids, the acid containing a common ion of ionic liquid was added to the composite membranes. The characterization of composite membranes was carried out using small-angle X-ray scattering (SAXS), thermogravimetric analyzer (TGA) and impedance spectroscopy. As a result, the composite membranes containing acid showed higher proton conductivity than those with no acid under the un-humidified condition due to a decrease in viscosity. In addition, the proton conductivity of composite membranes increased with increasing mole concentration of acid.

  • PDF

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

Enhancement of electro-optic performance in dyesensitized solar sell using homeotropically aligned liquid crystal molecular

  • Kim, Hyeon-Kyung;Jin, Sung-Ho;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1130-1132
    • /
    • 2009
  • We propose a novel way for enhancement of efficiency on a quasi solid-state dye-sensitized solar cell (DSSC). It contained gel type electrolyte mixing the liquid crystal (LC) of specific concentration and applied voltage for alignment of the LC. Aligned LC is supported charge transfer inside electrolyte and efficiency is increased in DSSC. We made a quasi solid-state DSSC which applied DC voltage or not and have measured the power conversion efficiency (PCE) and the fill factor. From measurement, we obtain high performances in case of cell applied voltage compare to reference cell.

  • PDF

상온 이온성 액체의 리튬 이차 전지 전해질로써의 적용 (The Aapplication of Ionic Liquid Electrolyte for Lithium Ion Batteries)

  • 김진은;문준영
    • 공업화학전망
    • /
    • 제23권1호
    • /
    • pp.30-41
    • /
    • 2020
  • 최근 전기차, 신재생에너지 등장 등으로 중대형 이차전지 시장이 확대되면서, 리튬 이온 배터리 안전성 이슈 관련 고안전성 전해액 소재에 대한 관심이 높아졌다. 다양한 고안전성 전해액 시스템 중, 상온 이온성 액체는 비발화성, 낮은 증기압 특성으로 많은 관심을 받고 있다. 뛰어난 물리적 특성에도 불구하고 리튬 이온 배터리의 전해액으로 사용되기 위해서는 전도도 및 전기화학 안전성, 전극 계면 거동이 전기화학 성능을 얻는데 만족되어야 한다. 많은 종류의 상온 이온성 액체들이 분자 구조 설계 및 양극/음극 전해액 사용, 전지 내 부품 안전성 확보 등의 다양한 접근 방법들로 연구가 진행되어 왔다. 향후 지속적인 전지 안전성의 이슈에 대한 중요성 증대로 상온 이온성 액체에 대한 연구 역시 더 활발해질 것으로 기대되며, 본 기고문에서는 다양한 상온 이온성 액체들이 전지 시스템에 적용된 연구동향에 대해서 정리하고 소개하고자 한다.

Linear and network structures of polymer electrolyte based on phosphate and polyether copolymers

  • Kim, Jun-Young;Kim, Seong-Hun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1998년도 가을 학술발표회논문집
    • /
    • pp.232-235
    • /
    • 1998
  • ion conducting polymers have been extensively investigated because of their potential application as an electrolyte in solid state batteries [1]. Among the polymer electrolytes, solid polymer electrolytes (SPEs) composed of ion conducting polymer and alkali metal salt have many advantages such as high ionic conductivity, high energy density and light weight. This made them suitable replacement for liquid electrolytes. (omitted)

  • PDF

Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New 'LABOHR' Flow Cell Concept

  • Bresser, Dominic;Paillard, Elie;Passerini, Stefano
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권2호
    • /
    • pp.37-44
    • /
    • 2014
  • The $Li-O_2$ battery has been attracting much attention recently, due to its very high theoretical capacity compared with Li-ion chemistries. Nevertheless, several studies within the last few years revealed that Li-ion derived electrolytes based on alkyl carbonate solvents, which have been commonly used in the last 27 years, are irreversibly consumed at the $O_2$ electrode. Accordingly, more stable electrolytes are required capable to operate with both the Li metal anode and the $O_2$ cathode. Thus, due to their favorable properties such as non volatility, chemical inertia, and favorable behavior toward the Li metal electrode, ionic liquid-based electrolytes have gathered increasing attention from the scientific community for its application in $Li-O_2$ batteries. However, the scale-up of Li-$O_2$ technology to real application requires solving the mass transport limitation, especially for supplying oxygen to the cathode. Hence, the 'LABOHR' project proposes the introduction of a flooded cathode configuration and the circulation of the electrolyte, which is then used as an oxygen carrier from an external $O_2$ harvesting device to the cathode for freeing the system from diffusion limitation.

용융 탄산염 연료전지용 gamma $LiAlO_{2}$ 전해질 지지체의 미세구조 및 기계적 강도 변화에 대한 $B_{2}O_{3}$ 첨가의 영향 (Effect of $B_{2}O_{3}$ addition on mechanical strength and microstructure of a porous $LiAlO_{2}$ electrolyte support for molten carbonate fuel cells)

  • 함형철;윤성필;홍성안
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.54-59
    • /
    • 2007
  • A sintering aid, $B_{2}O_{3}$ have been included into a $LiAlO_{2}$ electrolyte support by a tape casting method in order to reinforce mechanical strength of the support for molten carbonate fuel cells [MCFCs). Starting idea originates from the low melting point of $B_{2}O_{3}$ ($450^{\circ}C$), which can provide the low temperature consolidation of ceramic materials. The mechanical properties and the microstructure changes of the $B_{2}O_{3}$-included electrolyte support were examined by scanning electron microscope, mercury porosimetry, X-ray powder diffraction [XRD], high temperature differential scanning calorimeter and three-point bending strength measurement. The mechanical strength was clearly improved by addition of $B_{2}O_{3}$. The increase of mechanical strength results from the neck growth of a new $LiAlO_{2}$ phase between $LiAlO_{2}$ particles by the liquid phase sintering. Average pore size and porosity of the electrolyte support reinforced by addition of the sintering aid, $B_{2}O_{3}$, was $0.24{\mu}m$ and 59%, respectively which were suitable microstructure of a matrix for an application of MCFCs.

  • PDF

염료태양전지용 고온안정성 전해질 (High Temperature Stable Eletrolyte for Dye Solar Cell)

  • 한치환;이학수
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.220-224
    • /
    • 2009
  • The effect of addition of single and binary additives on the performance of dye-sensitized $TiO_2$ solar cells based on 1,2-dimethyl-3-propylimidazolium iodide (DMPII) in ethylene carbonate (EC) and gamma-butyrolactone (GBL) has been evaluated at different cell temperatures in the $30-120^{\circ}C$ range. The electrolyte containing a single additive, 2-(dimethylamino)-pyridine (DMAP) showed best performance, which showed further enhancement for an electrolyte containing binary additives, DMAP and 5-chloro-1-ethyl-2-methylimidazole (CEMI) in equal molar ratio. The performance of the dye sensitized solar cell (DSC) based on electrolyte containing binary additives were found to be better than an acetonitrile based electrolyte. The dependence of different photovoltaic parameters (Voc, Jsc, ff, n) of the DSC upon temperature has been studied over the $30-120^{\circ}C$ range and only a small decrease in conversion efficiency has been observed. Thus the electrolyte containing binary additives (DMAP, CEMI) in EC/GBL solvent and show better performance in the investigated temperature range ($30-120^{\circ}C$).

  • PDF