• Title/Summary/Keyword: Liquid Diffusion Bonding

Search Result 44, Processing Time 0.023 seconds

BONDING PHENOMENON IN TRANSIENT LIQUID PHASE BONDING OF NI BASE SUPERALLOY GTD-111

  • Kang, Chung-Yun;Kim, Dae-Up;Woo, In-Soo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.798-802
    • /
    • 2002
  • Metallurgical studies on the bonded interlayer of directionally solidified Ni-base superalloy GTD111 joints were carried out during transient liquid phase bonding. The formation mechanism of solid during solidification process was also investigated. Microstructures at the bonded interlayer of joints were characterized with bonding temperature. In the bonding process held at 1403K, liquid insert metal was eliminated by well known mechanism of isothermal solidification process and formation of the solid from the liquid at the bonded interlayer were achieved by epitaxial growth. In addition, grain boundary formed at bonded interlayer is consistent with those of base metal. However, in the bonding process held at 1453K, extensive formation of the liquid phase was found to have taken place along dendrite boundaries and grain boundaries adjacent to bonded interlayer. Liquid phases were also observed at grain boundaries far from the bonding interface. This phenomenon results in liquation of grain boundaries. With prolonged holding, liquid phases decreased gradually and changed to isolated granules, but did not disappeared after holding for 7.2ks at 1473K. This isothermal solidification occurs by diffusion of Ti to be result in liquation. In addition, grain boundaries formed at bonded interlayer were corresponded with those of base metal. In the GTD-ll1 alloy, bonding mechanism differs with bonding temperature.

  • PDF

A Study on Fabrication of Ti Matrix Composites by Liquid Phase Diffusion Bonding (액상확산접합법을 이용한 Ti 금속기복합재료 제조에 관한 연구)

  • Kim, Gyeong-Mi;U, In-Su;Gang, Jeong-Yun;Lee, Sang-Rae
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.210-220
    • /
    • 1996
  • The purpose of this study is to develop the processing techniques of Fiber Reinforced Metal by Liquid Phase Diffusion Bonding method with SiC fiber as a reinforcing material and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements in reaction and CP Ti(Commercial Pure) as a matrix. The microstructure and the distribution of elements is reaction zone among CP Ti/Ti-15wt%Cu-20wt%Ni(TCN20)/SiC long fiber were investigated by Optical Microscope, SEM/EDX, EPMA, X-ray and AES. The results obtained in this study are as follows. 1) When Ti matrix composite materials are fabricated under the bonding condition of 1273Kx1200sec, the SiC long fiber was the most suitable reinforcing material for Ti matrix composite materials. 2) With SiC long fiber under same condition, a TiC layer(1.0-1.6$\mu\textrm{m}$) was observed on the surface of SiC long fiber. 3) Liquid Phase Diffusion Bonding has shown the feasibility of production of Ti matrix composite materials.

  • PDF

A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels (304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

The Effect of Base Metal Grain Boundary on Isothermal Solidification Phenomena during TLP Bonding of Ni Base Superalloys (액상확산접합한 Ni기 초내열합금의 등온응고거동에 미치는 모재결정입계의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.325-333
    • /
    • 2001
  • The effect of base metal grain size on isothermal solidification behavior of Ni-base superalloy, CMSX-2 during transient liquid phase (TLP) bonding was investigated employing MBF-80 insert metal. TLP-bonding of single crystal. coarse-grained and fine-grained CMSX-2 was carried out at 1373∼1548k for various holding time in vacuum. The eutectic width diminished linearly with the square root of holding time during isothermal solidification process for single crystal, coarse-grained and fine-grained base metals. The completion time for isothermal solidification decreased in the order ; single crystal, coarse-grained and fine-grained base metals. The difference of isothermal solidification rates produced when bonding the different base metals could be explained quantitatively by the effect of base metal grain boundaries on the apparent average diffusion coefficient of boron in CMSX-2.

  • PDF

Trasient Liquid Phase bonding for Power Semiconductor (전력반도체 패키징을 위한 Transient liquid phase 접합 기술)

  • Roh, Myong-Hoon;Nishikawa, Hiroshi;Jung, Jae Pil;Kim, Wonjoong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, a demand in sustainable green technologies is requiring the lead free bonding for high power module packaging due to the environmental pollution. The Transient-liquid phase (TLP) bonding can be a good alternative to a high Pb-bearing soldering. Basically, TLP bonding is known as the combination of soldering and diffusion bonding. Since the low melting temperature material is fully consumed after TLP bonding, the remelting temperature of joint layer becomes higher than the operating temperature of the power module. Also, TLP bonding is cost-effective process than metal nanopaste bonding such as Ag. In this paper, various TLP bonding techniques for power semiconductor were described.

Effect of Bonding Temperature and Heating Rate on Transient Liquid Phase Diffusion Bonding of Ni-Base Superalloy (니켈기 초내열 합금의 천이액상확산접합 특성에 미치는 접합 온도 및 가열 속도의 영향)

  • Choi Woo-Hyuk;Kim Sung-Wook;Kim Jong-Hyun;Kim Gil-Young;Lee Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • This study was carried out to investigate the effect of bonding temperature and heating rate on transient liquid phase diffusion bonding of Ni-base superalloy. The heating rate was varied by $0.1^{\circ}C$/sec, $1^{\circ}C$/sec, $10^{\circ}C$/sec to the bonding temperatures $1100^{\circ}C,\;1150^{\circ}C,\;1200^{\circ}C$ under vacuum. As bonding temperature increased, maximum dissolution width of base metal increased, but a dissolution finishing time decreased. The eutectic width of insert metal in the bonded interlayer decreased linearly in proportion to the square root of holding time during isothermal solidification stage. The bonding temperature was raised, isothermal solidification rate slightly increased. As the heating rate decreased and the bonding temperature increased, the completion time of dissolution after reaching bonding temperature decreased. When the heating rate was very slow, the solidification proceeded before reaching bonding temperature and the time required for the completion of isothermal solidification became reduced.

A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding (액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

A Study on Development of Insert Metal for Liquid Phase Diffusion Bonding of Fe Base Heat Resistance Alloy (Fe 기내열합금의 액상확상접합용 삽입금속의 개발에 관한 연구)

  • 강정윤;김인배;이상래
    • Journal of Welding and Joining
    • /
    • v.13 no.3
    • /
    • pp.147-156
    • /
    • 1995
  • The change of microstructure in the bonded interlayer and tensile properties of joints were studied for liquid phase diffusion bonding using STS-310 and Incoloy-825 as base metal and base metal+B alloy as insert inetal. Main experimental results obtained in this study are as follows. 1) The optimum amount of B addition into the insert metal was found to be about 4mass%. 2) When isothermal solidification was completed, the microstructure in the bonded interlayer was the same with that of the base metal because of the grain boundary migration in the bonded interlayer. 3) All of the tensile specimen fractured at base metal and joints bonded at optimum condition exhibited tensile properties in excess of base metal requirements. 4) It was determined that fine car-borides and bordes such as M$_{23}$(C,B)$_{6}$, Cr$_{2}$B, and CrB in STS-310S and TiB in Incoloy-825 exist at the grain boundary around bonded interlayer. These precipitates almost disappeared after homogenizing treatment at 1373K for 86.4ks.s.

  • PDF

Influences of boron and silicon in insert alloys on microstructure and isothermal solidification during TLP bonding of a duplex stainless steel using MBF-35 and MBF-30

  • Yuan, Xinjian;Kim, Myung-Bok;Kang, Chung-Yun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.59-59
    • /
    • 2009
  • The influences of B and Si in the filler metals on microstructure and isothermal solidification during transient liquid-phase (TLP) bonding of a nitrogen-containing duplex stainless steel with MBF-30 (Ni-4.5wt.%Si-3.2wt.%B) and MBF-35 (Ni-7.3wt.%Si-2.2wt.%B), were studied at the temperature range of $1030-1090^{\circ}C$ with various times from 60 s to 3600 s under a vacuum of approximately $10^{-5}$ Torr. In case of the former, BN, $Ni_3B$ and $Ni_3Si$ precipitates were formed in the bonding region. BN and $Ni_3Si$ secondary phases were present in the joint for the latter case. The formation of $Ni_3B$ within the joint centerline is dependent on B content. The morphology of $Ni_3Si$ is dominated by Si concentration. A difference between the times for complete isothermal solidification obtained by the experiments and the conventional TLP bonding diffusion model was observed when using MBF-35. According to the simulated results, the isothermal solidification completion time for MBF-35 case was smaller than that in MBF-30. However, this experimental value obtained using MBF-35 was notably larger than that obtained using MBF-30. Isothermal solidification of liquid MBF-30 is controlled by the first isothermal solidification regime dependent on B diffusion model, whereas that of liquid MBF-35 experiences two isothermal solidification regimes and is mainly controlled by the second isothermal solidification dependent on Si diffusion model. In addition, only if Si content exceeds a critical value, the slower 2nd solidification regime will commence.

  • PDF

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging (전력반도체 접합용 천이액상확산접합 기술)

  • Lee, Jeong-Hyun;Jung, Do-hyun;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.9-15
    • /
    • 2018
  • This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.