• Title/Summary/Keyword: Liquid Crystal Display

Search Result 1,299, Processing Time 0.027 seconds

Viewing angle controllable in-plane switching liquid crystal display using one panel

  • Kim, Jin-Ho;Lim, Young-Jin;Her, Jung-Hwa;Srivastava, Anoop Kumar;Park, Kyoung-Ho;Lee, Joun-Ho;Kim, Byeong-Koo;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.629-632
    • /
    • 2009
  • We have proposed a novel viewing angle controllable display of in-plane switching (IPS) mode with single panel. One pixel of this device is divided to two regions, in which main pixel shows image and sub pixel for viewing angle control. In initial state, the liquid crystal of sub pixel is homogeneous aligned on substrate for wide viewing angle mode. On the other hand, after applying voltage, the liquid crystal of sub pixel tilts up for narrow viewing angle mode. The proposed device has advantage for the function for simple manufacturing process and good viewing angle control with single panel.

  • PDF

Light Leakage Comparison in a Homogeneously Aligned Nematic Liquid Crystal Display Depending on an Angle between Polarizer Axis and Optic Axis of a Liquid Crystal

  • Song, I.S.;Baik, I.S.;Won, H.K.;Kim, D.S.;Soh, H.S.;Kim, W.Y.;Lee, S.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1182-1184
    • /
    • 2004
  • We have studied contrast ratio of a homogeneously aligned nematic liquid crystal (LC) display as a function of the angle between the polarizer axis and LC director. The results show that a cell configuration in which a polarizer axis facing a light source coincides with a short LC axis has a better process margin in terms of high contrast ratio than that of the cell coinciding with a long LC axis.

  • PDF

Study on Improving Viewing Angle of Homogeneous Aligned Liquid Crystal Display using an Compensation Film (보상필름을 이용한 수평 배향된 액정 디스플레이의 시야각 향상에 관한 연구)

  • Lim, Young-Jin;Kim, Seong-Su;Chin, Mi-Hyung;Jeon, Eun-Jeong;Choi, Yu-Jin;Lee, Seung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1101-1104
    • /
    • 2008
  • We have studied electro-optic characteristics to improve viewing angle of the in-plain switching (IPS) liquid crystal display using an compensation film. The IPS mode shows relatively large light leakage and color shift in diagonal directions in a dark state. To solve this problem, we have compensated the low contrast ratio in diagonal directions using one optimized discotic film and adjusting TAC films of polarizers. The compensated IPS mode shows wide viewing angle characteristics that region of CR 50:1 is over $60^{\circ}$ of polar angle in all directions. The optimized IPS cell exhibits much better performances than other methods do in terms of CR and color uniformity.

Direct Formation of Bi-level Microstructures for Wide-viewing Liquid Crystal Displays with Plastic Substrates

  • Hong, Jong-Ho;Cho, Seong-Min;Kim, Yeun-Tae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1286-1289
    • /
    • 2008
  • We report on a wide-viewing liquid crystal (LC) display with bi-level microstructures spontaneously formed by selective wetting on a chemically heterogeneous surface. The bi-level microstructures serve as spacers for maintaining uniform cell gap, as well as protrusions for wide-viewing properties. Our LC cell having the bi-level microstructures shows good electro-optic properties.

  • PDF

Three-Terminal Hybrid-aligned Nematic Liquid Crystal Cell for Fast Turn-off Switching

  • Baek, Jong-In;Kim, Ki-Han;Kim, Jae-Chang;Yoon, Tae-Hoon
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.16-18
    • /
    • 2009
  • A three-terminal hybrid-aligned nematic liquid crystal (3T-HAN LC) cell capable of fast turn-off switching is proposed in this paper. By employing the relaxation process initiated by an electric-field pulse, a fast turn-off time of less than 1 ms can be obtained through optically hidden relaxation. A low operating voltage and high transmittance were confirmed through simulations and experiments.

Fabrication of a Dual-Gap Substrate Using the Replica-molding Technique for Transflective Liquid Crystal Displays

  • Kim, Yeun-Tae;Hong, Jong-Ho;Cho, Seong-Min;Lee, Sin-Doo
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.68-71
    • /
    • 2009
  • A replica-molding method of fabricating a dual-gap substrate for transflective liquid crystal (LC) displays is demonstrated. The dual-gap substrate provides homeotropic alignment for the LC molecules without any surface treatment and embedded bilevel microstructure on one of the two surfaces to maintain different cell gaps between the transmissive and reflective subpixels. The proposed transflective LC cell shows no electro-optic disparity between two subpixels and reduces the panel thickness and weight by 30% compared to the conventional transflective LC cell, which has two glass substrates.

Simulation for Electro-Optic Characteristics of the Fringe-Field Driven Reflective Hybrid Aligned Nematic Liquid Crystal Display with One Polarizer (1매의 편광판으로 구성된 Fringe-Field 구동형 반사형 Hybrid Aligned Nematic 액정디스플레이의 전기-광학 특성에 관한 시뮬레이션)

  • 박지혁;정태봉;이종문;김용배;이승희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.908-913
    • /
    • 2003
  • We have performed computer simulation to obtain electro-optic characteristics of reflective hybrid aligned nematic liquid crystal displays (LCDs) driven by fringe field. The results show that the optimal retardation value (dΔn) of the cell is 0.289 ${\mu}$m, which allows for the cell to have a practical cell gap of larger than 3 ${\mu}$m when manufacturing. A reflectance of the dark state is only 0.114 % for an incident light 550 nm. At this condition, the light efficiency of white state reaches 92.7 %. The display with optimized cell parameters shows that the contrast ratio greater than 5 exists over 600 of polar angle in all directions and lower driving voltage than that of fringe-field driven homogeneously aligned reflective LCD.

High-transmittance Multi-domain Vertical Alignment Liquid Crystal Device with Protrusion Structure

  • Kim, Ki-Han;Jeon, Eun-Young;Park, Byung Wok;Choi, Sun-Wook;Song, Dong Han;Kim, Hoon;Shin, Ki-Chul;Kim, Hee Seop;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.166-169
    • /
    • 2012
  • We propose a high-transmittance multi-domain vertical alignment liquid crystal device with a protrusion structure. Disclination lines, which inevitably appear at the boundaries of domains in a multi-domain structure, can be reduced by adding a protrusion structure on the top substrate. The transmittance was improved by 11% using the proposed structure with no change of either the dark state or the operating voltage.

Formation of Dual Threshold in a Vertical Alignment Liquid Crystal Device

  • Choi, Sun-Wook;Jin, Huilian;Kim, Ki-Han;Lee, Ji-Hoon;Kim, Hoon;Shin, Ki-Chul;Kim, Hee Seop;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.170-173
    • /
    • 2012
  • We present a method that enables dual threshold voltages in a vertical alignment liquid crystal device, through which the gamma shift can be reduced with no subsequent decrease in the contrast ratio. By forming polymer layers, the threshold voltage shift is accomplished through the utilization of the voltage drop effect. We expect that the proposed method can be applied to the conventional 4-domain mode in order to achieve an 8-domain mode without the need for complex driving schemes.

Optically isotropic liquid crystal composite incorporating with in-plane electric field geometry

  • Yamamoto, Shin-Ichi;Haseba, Yasuhiro;Iwata, Takashi;Higuchi, Hiroki;Choi, Suk-Won;Kikuchi, Hirotsugu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1593-1595
    • /
    • 2009
  • We demonstrate an intriguing liquid crystal display (LCD) mode that comprises an optically isotropic liquid crystal (LC) composite incorporating with inplane electric field geometry. No surface treatment, such as rubbing, is required to fabricate the LCD mode because it is based on an optically isotropic state. The measured response time was of submillisecond order. The LCD mode has several unique features such as fast response, continuous grayscale capability, and a high contrast ratio.

  • PDF