• Title/Summary/Keyword: Liqufaction

Search Result 2, Processing Time 0.014 seconds

Liquifaction Evaluation of Saemangeum Area and the Considerations of Liquifaction Effect to the Foundations of Structures in Near Future (II) (새만금 지역의 액상화 평가 및 향후 구조물 기초 설계시 액상화 영향의 고려방안 (II))

  • Kim, You-Seong;Ko, Hyoung-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2011
  • In the preceding study, the possibility of liquefaction according to the liquefaction evaluation methods was predicted in Saemangeum reclamation area for tide embankment, Jeollabuk-do, Korea. The risk of liquefaction was also expected when foundations and underground structures were built at a depth within 10m below ground surface, and meticulous care was required in the design of them in the future. This study considered the effect of the embedded depth for foundation design regarding liquefaction based on the various earthquake data from literatures. On the basis of the results of this study, an alternative consideration in foundation design for liquefaction was proposed for the Saemangeum area.

Seismic Stability Evaluation of Sand Ground with Organic Soil by Using Shaking Table Test (진동대 시험을 이용한 유기질토가 협재된 모래지반의 내진 안정성 평가)

  • Yongjin Chung;Youngchul Baek;Donghyuk Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • The Gangneung region has an environment suitable for the formation of organic soil, and there is an alluvial layer in which sedimentary sand layers are distributed on the upper and lower parts of the organic soil. In order to evaluate the seismic safety of the railway roadbed passing through the Gangneung area, a railway roadbed and ground model considering the similarity ratio was fabricated, a shaking table test was conducted, and the seismic stability was evaluated by comparing the effective stress analysis results. The applied seismic waves were artificial seismic waves, Gyeongju seismic waves, Borah seismic waves, Nahanni seismic waves, and Tabas seismic waves. It became. Due to the ground reinforcement effect by jet grouting applied to the lower ground of the new roadbed, the displacement of the new roadbed was found to be reduced from a minimum of 33.7% to a maximum of 56.7% compared to the existing roadbed. The shaking table test results were verified by effective stress analysis using the Finn model of the Flac program, and showed a similar trend to the shaking table test values.