• Title/Summary/Keyword: Liquefaction damage prediction

Search Result 4, Processing Time 0.015 seconds

Comparison of Liquefactive Hazard Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 재해도 비교)

  • Song, Seong-wan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.1
    • /
    • pp.5-15
    • /
    • 2022
  • Due to the Pohang earthquakes in 2017, concerns are increasing that Korea is no longer safe from liquefaction, and needs the research to take proper measures for liquefaction. Liquefaction is defined as the loss of shear strength of the ground. In order to solve this problem, many studies, such as composing a liquefaction hazard map using Liquefaction Potential Index (LPI), have been conducted. However, domestic researches on the comparative analysis of liquefaction prediction results are not sufficient. Therefore, in this study, liquefaction hazard maps were composed using the standard penetration test results, shear wave velocity values, and cone penetration test results. After that, the precision was determined by comparing the calculated LPI using the geotechnical information and predicted LPI via spatial interpolation target. Based on the analysis results, the predicted LPI value using geotechnical information is more precise than using calculated LPI value.

Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures

  • Chou, Jui-Ching;Lin, Der-Guey
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • In metropolitan areas, the quantity and density of the underground structure increase rapidly in recent years. Even though most damage incidents of the underground structure were minor, there were still few incidents causing a great loss in lives and economy. Therefore, the safety evaluation of the underground structure becomes an important issue in the disaster prevention plan. Liquefaction induced uplift is one important factor damaging the underground structure. In order to perform a preliminary evaluation on the safety of the underground structure, simplified prediction equations were introduced to provide a first order estimation of the liquefaction induced uplift. From previous studies, the input motion is a major factor affecting the magnitude of the uplift. However, effects of the input motion were not studied and included in these equations in an appropriate and rational manner. In this article, a numerical simulation approach (FLAC program with UBCSAND model) is adopted to study effects of the input motion on the uplift. Numerical results show that the uplift and the Arias Intensity (Ia) are closely related. A simple modification procedure to include the input motion effects in the Sasaki and Tamura prediction equation is proposed in this article for engineering practices.

Comparison of Liquefaction Probability Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 확률지도 비교)

  • Song, Seongwan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.5-13
    • /
    • 2021
  • The interest of expecting the liquefaction damage is increasing due to the liquefaction in Pohang in 2017. Liquefaction is defined as a phenomenon that the ground can not support the superstructure due to loss of the strength of the ground. As an alternative against this, many studies are being conducted to increase the precision and to compose a liquefaction hazard map for the purpose of identifying the scale of liquefaction damage using the liquefaction potential index (LPI). In this research, in order to analyze the degree of precision with regard to spatial interpolation objects such as LPI value and geotechnical information for LPI determination, liquefaction hazard map were made for the target area. Furthermore, based on the trend of precision, probability value was analyzed using probability maps prepared through qualitative characteristics. Based on the analysis results, the precision of the liquefaction hazard map setting the spatial interpolation object as geotechnical information is higher than that as LPI value. Furthermore, the precision of the liquefaction hazard map does not affect the distribution of the probability value.

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.