• Title/Summary/Keyword: Liposome, Retinol. Stabilization

Search Result 6, Processing Time 0.019 seconds

The study on stabilization of Retinol-Nanoemulsion using Skin Lipid Matrix(SLM)

  • Cho, Joo Hyun;Lim, Choon Bong;Chai, Hee Gil;Eom, Sang Yong;Kim, Jong Heon;Ji, Hong Geun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.61-72
    • /
    • 2003
  • In cosmetic area, retinol is prominent ingredient for anti-wrinkle but unstable against light, heat, oxygen and so on. Therefore the stabilization of retinol is required. Here, we capsulated doubly retinol in the SLM(Skin Lipid Matrix) that makes three dimensional lamellar structure similar to skin, after formation of primary liposome (retinol-nanoemulsion). First, we make primary liposome from retinol / hydrogenated lecithin / polysorbate20 / caprylic & capric triglyceride / ethanol / and so on, and the mean diameter to 70 nm, using microfluidizer passed three times at 800 Bar, repeatedly. Then we produce DC-liposome (doubly capsulated-liposome) that was encapsulated primary liposome with SLM made of hydrogenated phosphatidyl choline / caprylic & capric triglyceride / 1, 3-butylene glycol / ceramide3 / cholesterol /etc. We measured for color stability against light and heat with chromameter. As a result of this experiment, we observed DC-liposome was more than from 1.5 to 3 times as stable as general liposome. Livability of retinol has improved from 2 to 6 times when we analyzed it by HPLC. Also, penetration effect of DC-liposome has improved.

  • PDF

Effect of cholesterol into liposome on the stabilization of incorporated retinol

  • Lee, Jae-Uk;Lee, Soo-Jin;Kang, Joo-Sung;Lee, Kyung-Eun;Kim, Jin-Ju;Lee, Seung-Cheol
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.60-72
    • /
    • 2003
  • To investigate the effect of cholesterol in liposome on the stability of incorporated retinol, the physico-chemical experiments for various amounts of cholesterol-containing liposomes were performed. Liposome with retinol containing cholesterol was prepared as multilamella vesicles(MLVs) by dehydration/rehydration method. The incorporation efficiency of retinol into liposome was maximized as 99.31 % at 50:50 (phosphatidylcholine/cholesterol) at pH 9. The stability of incorporated retinol at low storage temperature was enhanced with increasing cholesterol content than at high storage temperature. For example, incorporated retinol in liposome at glycine buffer(pH 9} was degraded slowly during storage at 4. The degradation of retinol in liposomes was slower at pH 9 than at pH 7. These results supported that cholesterol in liposome increased largely the stability of incorporated retinol.

  • PDF

Effect of ${\beta}$-Sitosterol in Liposome Bilayer on the Stabilization of Incorporated Retinol

  • Lee, Seung-Cheol;Kim, Jin-Ju;Lee, Kyung-Eun
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.604-607
    • /
    • 2005
  • In this study, the effect of ${\beta}$-sitosterol (SS) in the liposome bilayer on the stability of incorporated retinol was evaluated. Retinol was incorporated into liposomes consisting of various ratios of soybean phoaphatidylcholine (PC) to SS, while liposomes were prepared as multilamellar vesicles by the dehydration/rehydration method. Retinol was readily incorporated into liposomes with various SS contents, with incorporation efficiencies higher than 98% for all conditions. The incorporation efficiency of retinol increased slightly as the SS content in liposomes increased. Its average particle size also increased as the SS content increased. Mean particle size at PC to SS ratios of 100:0, 90:10, 80:20, 70:30, 60:40, and 50:50 were 12.16, 17.57, 35.00, 40.62, 83.45, and $88.94\;{\mu}m$, respectively. Liposomal retinol degradation in aqueous solution was measured with respect to SS content at various periods of time at four different temperatures of 4, 25, 37, and $50^{\circ}C$, and the stability of the incorporated retinol enhanced as the SS content increased. At $4^{\circ}C$, for example, retinol in the liposomes of 50:50 (PC:SS) remained at 84.42% after storage for 10 days, while in 100:0 (PC/SS) it remained at 42.62%. These results indicate that SS content in liposomes played an important role in the incorporation efficiency of retinol and its stability.

Stabilization of Retinol through Incorporation into Liposomes

  • 이승철;육현균;이동훈;이경은;황용일;Richard D. Ludescher
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.358-363
    • /
    • 2002
  • Chemical and photochemical processes during storage and preparation rapidly degrade retinol, the most active form of vitamin A. therefore, the efficacy of incorporation into liposomes in order to modulate the kinetics of retinol degradation was investigated. Retinol was readily incorporated into multilamellar liposomes that were prepared form soybean phosphatidylcholine; the extent of the incorporation was 98.14±0.93% at pH 9.0 at a ratio of 0.01 : 1 (wt:wt) retinol : phospholipid. It was only marginally lower at higher retinol concentrations. The pH of the hydration buffer had a small effect. The incorporation efficiency ranged from 99.25±0.47% at pH 3 to 97.45±1.13% at pH 11. The time course of the retinol degradation in the aqueous solution in liposomes was compared to that of free retinol and free retinol with α-tocopherol under a variety of conditions of pH(3, 7, and 11), temperature(4, 25, 37, and 50℃), and light exposure(dark, visible, and UV). The retinol that was incorporated into the liposomes degraded significantly slower than the free retinol or retinol with α-tocopherol at pH 7 and 11. At pH 3, where the free retinol degrades rapidly, the degradation kinetics were similar in liposomes and the presence of α-tocopherol. At pH 7.0 and 4℃ in the light, for example, free aqueous retinol was completely degraded within 2 days, while only 20% of the retinol in the liposomes were degraded after 8 days. In general, the protective effect of the liposome incorporation was greater at low temperatures, at neutral and high pH, and in the dark. The results suggest that protection is greater in the solid, gel phase than in the fluid liquid crystalline phase lipids. These results indicate that the incorporation into liposomes can extend the shelf-life of retinol under a variety of conditions of temperature, pH, and ambient light conditions.

RETINOL STABILIZATION BY PSEUDO-LIPOSOME AND LAMELLAR LIQUID CRYSTAL

  • Lee, Seung-Ji;Jo, Byoung-Kee;Lee, Young-Jin;Ryu, Chang-Suk;Kim, Beom-Jun;Suk, Chang-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.116-122
    • /
    • 1998
  • It is well known that all-trans-retinol is not only very unstable in heat, light, air, and water, but also skin-irritant despite a good anti-wrinkle effect. Therefore, it is very difficult to stabilize retinol and make the safe retinol containing cosmetics by using a certain concentration of retinol with real effect. In order to dissolve these problems and apply retinol for skin care cream, firstly retinol is to be encapsulated in the vesicle called Liposphere (pseudo-liposome) which is made by homogenizing under high pressure the mixtures of lecithin, retinol, caprylic/capric triglyceride, and hydroalcoholic solution ; and then this retinol containing Liposphere is to be intercalated in lamellar liquid crystal layer which is prepared by emulsifying in an optimal ratio the mixtures composed of non-ionic emulsifier (cetearyl glucoside, sorbitan stearate & sucrose cocoate etc), cetearyl alcohol, stearic acid, cholesterol, and ceramide. In addition, the stability of the retinol containing oil in water cream by adding the polymeric emulsifier such as acrylate /C10-30 alkyl alkylate crosspolymer is to be ensured even at 55 C. Retinol containing oil in water cream prepared through above procedure could be very stable at 45 C for at least 50 days. The structure identification of lamellar liquid crystal was determined using polarized light microscope and electron microscope Conclusively, we could make the very stable retinol containing oil in water cream by triple procedure, that is, encapsulation of retinol in Liposphere, intercalation of retinol in lamellar liquid crystal layer, and assurance of the high temperature stability of cream even at 55 C.

  • PDF

Study on Stabilization of Retinaldehyde using Drug-in-Cyclodextrinin-Liposome (DCL) for Skin Wrinkle Improvement (레틴알 안정화를 위한 사이클로덱스트린-리포좀에 관한 연구)

  • Ha, Ji Hoon;Choi, Hyeong;Hong, In Ki;Han, Sang-Kuen;Bin, Bum Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Retinaldehyde (RA), vitamin A derivative, is an intermediate between retinol and retinoic acid and has an excellent wrinkle improving effect. In this study, Drug-in-cyclodextrin-in-liposome (DCL) was used to enhance the stability and skin penetration of RA. The complex of RA and hydroxypropyl-beta-cyclodextrin (HP-β-CD) was prepared by the freeze-drying method, and the presence or absence of inclusion of retinal was confirmed by UV-Vis spectrometer, FT-IR and SEM images. RA was captured in HP-β-CD about 95.6% on 1 : 15 (w/w). The retinal-HP-β-CD complex was encapsulated in liposomes using a homomixer and microfluidizer, with an average particle size of 215 ± 4.2 nm and a zeta potential of -31.2 ± 0.5 mv. In the evaluation of the degradation stability of RA, degradation rate of RA-HP-β-CD-liposomes in water was 1.8% higher than RA-liposome (5.8%), RA-HP-β-CD complex (9.7%) and RA alone (37.6%). RA cream (0.05% RA) including RA-HP-β-CD-liposomes was prepared for clinical test with wrinkle-improving efficacy and skin dermis denseness evaluated for 2 or 4 weeks. RA cream showed a significant wrinkle improving effect without skin irritation. In conclusion, it was confirmed that the double stabilization technology using the DCL system contribu tes to the effect of improving skin wrinkles by increasing the stabilization of retinal.