• Title/Summary/Keyword: Lipid membrane

Search Result 540, Processing Time 0.185 seconds

A Benzylideneacetophenone Derivative Induces Apoptosis of Radiation-Resistant Human Breast Cancer Cells via Oxidative Stress

  • Park, Jeong Eon;Piao, Mei Jing;Kang, Kyoung Ah;Shilnikova, Kristina;Hyun, Yu Jae;Oh, Sei Kwan;Jeong, Yong Joo;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.404-410
    • /
    • 2017
  • Benzylideneacetophenone derivative (1E)-1-(4-hydroxy-3-methoxyphenyl) hept-1-en-3-one (JC3) elicited cytotoxic effects on MDA-MB 231 human breast cancer cells-radiation resistant cells (MDA-MB 231-RR), in a dose-dependent manner, with an $IC_{50}$ value of $6{\mu}M$ JC3. JC3-mediated apoptosis was confirmed by increase in sub-G1 cell population. JC3 disrupted the mitochondrial membrane potential, and reduced expression of anti-apoptotic B cell lymphoma-2 protein, whereas it increased expression of pro-apoptotic Bcl-2-associated X protein, leading to the cleavage of caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In addition, JC3 activated mitogen-activated protein kinases, and specific inhibitors of these kinases abrogated the JC3-induced increase in apoptotic bodies. JC3 increased the level of intracellular reactive oxygen species and enhanced oxidative macromolecular damage via lipid peroxidation, protein carbonylation, and DNA strand breakage. Considering these findings, JC3 is an effective therapy against radiation-resistant human breast cancer cells.

Lipid Composition of Freeze-Tolerant Baker's Yeasts (냉동내성빵효모의 지질분석)

  • Hahn, Young-Sook;Hiroyasu Kawai
    • Korean journal of food and cookery science
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 1995
  • The molar ratio of sterol to phospholipid differed from yeast strains, and the ratio was relatively higher in non-freeze-tolerant yeast strain, S. cerevisiae than freeze-tolerant yeast strains, D$\sub$2-4/ or CFY. Phospholipid composition of these yeast were also investigated. Phosphatidylcholine content was larger among phospholipids in all yeasts. Higher ratio of PC/PE was found in freeze-tolerant yeast than non-freeze-tolerant yeast. Higher proportion of linolein acid(18 : 2) against total fatty acid attached to phospholipid was observed in D$\sub$2-4/ than S. cerevisiae or CFY, and the degree of unsaturation of fatty acid was higher in D$\sub$2-4/ and CFY than in S. cerevisiae. These results suggested that the fluidity of yeast cell membrane was different in yeast strains, which might result in the difference in freeze-injury of yeast at low temperatures.

  • PDF

Contrasting rice sub-populations to tocols ratio associated with seed longevity

  • Lee, Jae-Sung;Kwak, Jieun;Yoon, Mi-Ra;Lee, Jeom-Sig;Hay, Fiona R.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.31-31
    • /
    • 2017
  • Understanding the mechanism(s) to overcome or prevent seed ageing deterioration during storage is of fundamental interest to seed physiologists. Vitamin E (tocols) is known as a key metabolite to efficiently scavenge lipid peroxy radicals which cause membrane breakdown resulting in seed ageing. However, in rice research this hypothesis has been tested for very few lines only without considering intraspecific variation in genomic structure. Here, we present a correlation study between tocols and seed longevity using a diverse rice panel. Seeds of 20 rice accessions held in the International Rice Genebank at the International Rice Research Institute, representing aus, indica, temperate japonica and tropical japonica subpopulations, were used for tocols analysis (quantification of ${\alpha}$-, ${\beta}$-, ${\gamma}$-, ${\delta}$-tocopherol/tocotrienol by ultra performance liquid chromatography) and storage experiments at $45^{\circ}C$ and 10.9% seed moisture content (sample taken for germination testing every 3 days up to 60 days). To examine interactions between DNA sequences and phenotype, the 700k high-density single-nucleotide polymorphism marker data-set was utilized. Both seed longevity (time for viability to fall to 50%; $p_{50}$) and tocols content varied across subpopulations due to heterogeneity in the genetic architecture. Among eight types of tocol homologues, ${\alpha}$-tocopherol and ${\gamma}$-tocotrienol were significantly correlated with $p_{50}$ (negatively and positively, respectively). While temperate japonica varieties were most abundant in ${\alpha}$-tocopherol, indica varieties recorded 1.3 to 1.7-fold higher ${\gamma}$-tocotrienol than those of other subpopulations. It was highlighted that specific ratio of tocol homologues rather than total tocols content plays an important role in the seed longevity mechanism.

  • PDF

Inhibition of the Algal Growth using TiO2-embedded Expanded Polystyrene (EPS) balls in Lab-scale Outdoor Experiment

  • Kim, Ga Young;Joo, Jin Chul;Ahn, Bo Reum;Lee, Dae Hong;Park, Jae Roh;Ahn, Chang Hyuk;Oh, Jong Min
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.174-179
    • /
    • 2018
  • $TiO_2$-embedded expanded polystyrene (TiEPS) balls with powdered $TiO_2$ particles embedded on the surface of EPS were developed, and the growth inhibition of Chlorella ellipsoidea, a green algae, was evaluated. The experiment was conducted using four reactors with various conditions of (A) natural sunlight, (B) natural sunlight + TiEPS balls, (C) dark, and (D) dark + TiEPS balls on the roof of the building during five days. Based on the analysis of cell number, cell morphology, concentrations of chlorophyll-a and phaeopigments, both surface reactions in heterogeneous photocatalysis and light shielding could inhibit the growth of C. ellipsoidea. The highly reactive hydroxyl radicals ($OH{\cdot}$) from TiEPS balls degraded the lipid cell membrane through the peroxidation reaction with the light shielding, eventually resulting in cell inactivation. Although dominant inhibitory effects on the growth of C. ellipsoidea were ambiguous, TiEPS balls were feasible to prevent and inhibit the excessive growth of algae in eutrophic water body.

Effects of Vespae Nidus on Peroxynitrite Production and Protein Expression of Proinflammatory Mediators (노봉방(露蜂房)이 t-butylhydroxyperoxide에 의한 Peroxynitrite 생성과 염증성 단백질 발현에 미치는 영향)

  • Jang, Jae-Shik;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1499-1505
    • /
    • 2007
  • Peroxynitrite ($ONOO^-$) is a reactive oxidant formed from superoxide anion radical (${\cdot}\;O_2-$) and nitric oxide (NO), which can oxidize cellular components such as essential protein, non-protein thiols, DNA, low-density lipoproteins and membrane phospholipids. ${\cdot}\;O_2-$ and $ONOO^-$ have contributed to the pathogenesis of diseases such as stroke, heart disease, Alzheimer's disease and atherosclerosis. Because of damaging effects of ${\cdot}\;O_2-$ and $ONOO^-$ oxidants, Vespae Nidus, which has been known to strengthen the kidneys to preserve the vital energy. was tested as a potential specific scavenger of those oxidants. In this study, the viability of Vespae Nidus (1, 10, 50 g/ml) to scavenge ${\cdot}\;O_2-$, NO, $ONOO^-$ and so to protect cells against tert-butylhydroxyperoxide (t-BHP) induced cell death was tested. The levels of ${\cdot}\;O_2-$ and $ONOO^-$ were detected by staining with DCFH-DA and DHR 123, respectively. Protein expression levels of COX-2, iNOS and $NF{-\kappa}B$ were assayed by western blot. Vespae Nidus blocked t-BHP-induced cell death in a dose-dependent fashion. Vespae Nidus inhibited t-BHP-induced production of ${\cdot}\;O_2-$, NO and $ONOO^-$ in YPEN cells. The lipid peroxide level was increased and glutathione level was decreased in lipopolysaccharide (LPS)-treated ICR mouse, whereas the ones in the Vespae Nidus-administered group were regulated beneficially. Vespae Nidus inhibited the expression of COX-2, iNOS and NF-κB (p65 and p50) genes in LPS-treated ICR mouse. The present study suggests that Vespae Nidus is a powerful antioxidant and promotes cellular defense activity by scavenging the toxic oxidants such as ${\cdot}\;O_2-$ and $ONOO^-$.

Plant Molecular Farming Using Oleosin Partitioning Technology in Oilseeds

  • Moloney, Maurice-M.
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.197-201
    • /
    • 1997
  • Plant seed oil-bodies or oleosomes ate the repository of the neutral lipid stored in seeds. These organelles in many oilseeds may comprise half of the total cellular volume. Oleosomes are surrounded by a half-unit membrane of phospholipid into which are embedded proteins called oleosins. Oleosins are present at high density on the oil-body surface and after storage proteins comprise the most abundant proteins in oilseeds. Oleosins are specifically targeted and anchored to oil-bodies after co-translation on the ER. It has been shown that the amino-acid sequences responsible for this unique targeting reside primarily in the central hydrophobic tore of the oleosin polypeptide. In addition, a signal-like sequence is found near the junction of the hydrophobic domain and ann N-terminal hydrophilic / amphipathic domain. This "signal" which is uncleaved is also essential for correct targeting. Oil-bodies and their associated oleosins may be recovered by floatation centrifugation of aqueous seed extracts. This simple partitioning step results in a dramatic enrichment for oleosins in the oil-body fraction. In the light of these properties, we reasoned that it would be feasible to create fusion proteins on oil-bodies comprising oleosins and an additional valuable protein of pharmaceutical or industrial interest. It was further postulated that if these proteins were displayed on the outer surface of oil-bodies, it would be possible to release them from the purified oil-bodies using chemical or proteolytic cleavage. This could result in a simple means of recovering high-value protein from seeds at a significant (i.e. commercial) scale. This procedure has been successfully reduced to practice for a wide variety of proteins of therapeutic, industrial and food no. The utillity of the method will be discussed using a blood anticoagulant, hirudin, and industrial enzymes as key examples.

  • PDF

Lipooligosaccharide biosynthesis genes of nontypable Haemophilus influenzae 2019

  • Lee, Na-Gyong;Melvin G. Sunshine;Jeffery J. Engstrom;Bradford W. Gibson;Michael A. Apicella
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.65-73
    • /
    • 1996
  • LPS/LOS, the compound found only in gram-negative bacterial outer membrane, plays important roles in bacterial maintenance as well as its pathogenesis. We isolated and characterized several genes required for NTHi 2019 LOS biosynthesis, which encode enzymes required for sugar substrate synthesis or the transfer of substrates to receptor molecules. The htrB gene, however, appears to have more complex role. It has acryltransferase activity as well as various other activity, which may control regulation of LOS biosynthesis as well as its pathogenicity. Evidences supporting the latter come from the observations that the lipid A of the B29 induced significantly less TNF ${\alpha}$ from macrophages than that of the wild type LOS (unpublished data). H. influenzae A2-htrB mutant strain was also significantly less invasive than the wild type strain. The structural similarities of the enterobacterial LPS and the Haemophilus LOS enabled us to isolate the NTHi 2019 genes involved in LOS biosynthesis genes by using the S. typhimurium LPS deep core mutants. While a similar approach has been used for E. coli, this technique for selection of an LPS phenotype has not been applied to nonenterobacterial species. The difficulties inherent in the molecular manipulation of organism such as Neisseria and Haemophilus species make this approach particularly attractive in the identification and cloning LOS genes. Studies on genetic features of LPS/LOS biosynthesis would be useful for understanding bacterial pathogenesis as well as for developing vaccines for these gram-negative pathogenic bacteria.

  • PDF

Choline Contents Survey in Commercial Milks (시판 우유 중 콜린 함량조사)

  • Jung, Won-Chul;Kim, Young-Il;Shon, Ho-Yeong;Kim, Suk;Lee, Hu-Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.4
    • /
    • pp.338-342
    • /
    • 2008
  • Choline is important an organic compound for normal membrane function, acetylcholine synthesis, lipid transport, and methyl metabolism. In biological tissues and foods, there are multiple choline compounds that contribute to choline content. Many researches suggest that memory and intelligence are improved by the supplement of choline. Recently, according to the effects of choline for memory, choline has been added to milk. In this study, the content of choline was analyzed the commercial whole milks and flavored milks by enzymatic method. The standard curve was linear with 0.00316 slope and 0.994 correlation coefficient. Recoveries varied between 89.8 and 97.6%. Contents of choline in whole milks and flavored milks were 14.56-15.19 and 4.11-11.50 mg/100g, respectively. The results of this study may be usable for the establishment of choline adequate intake for Korean.

Protective Effects of Dodam Water Extract (Dodam) Against Rotenone-Induced Neurotoxicity in Neuro-2A Cells

  • Youn, Myung-Ja;Park, Seong-Yeol;Park, Cha-Nny;Kim, Jin-Kyung;Kim, Yun-Ha;Kim, Eun-Sook;Moon, Byung-Soon;So, Hong-Seob;Park, Raek-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.438-445
    • /
    • 2008
  • Dodam formula (Dodam) has been used for neurodegenerative disease in Oriental medicine. Dodam is capable of protecting diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the underlying protective mechanism of Dodam on rotenone-induced cytotoxicity in rat neuroblastoma Neuro-2A cells. Treatment with Neuro-2A cells with rotenone caused the loss of cell viability, and condensation and fragmentation of nuclei, which was associated with the elevation of ROS level, and lipid peroxidation, the increase in Bax/Bcl-2 ratio. Rotenone induced mitochondrial dysfunction characterized by mitochondrial membrane potential loss and cytochrome-c release. These phenotypes induced by rotenone were reversed by pretreatment with Dodam. Our results suggested that major features of rotenone-induced neurotoxicity are partially mediated by mitochondrial dysfunction and oxidative stress, and that Dodam markedly protects Neuro-2A cells from oxidative injury. These data indicated that Dodam might provide a useful therapeutic strategy in treatment of the neurodegenerative diseases caused by oxidative injuries.

Ultrastructure of the Foregut Epithelial Cells in the Scarab Beetle, Allomyrina dichotoma Linne (장수풍뎅이 유충 내에 있는 전장 상피세포들의 미세구조)

  • Yu, Chai-Hyeock
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.177-186
    • /
    • 2005
  • The foregut epithelium of the last instar larva in the scarab beetle, Allomyrina dichotoma was observed with electron microscopes. The foregut epithelium of the scarab beetle larva is composed of a single-layered squamous absorptive cell. The luminal surface of the epithelium is covered with cuticular intima. The free surface of the squamous cell has a irregular array of microvilli 'brush border', while cell membrans close to the basal lamina are infolded and a lot of mitochondria are concentrated in those processes. The cytoplasm in the epithelial cells is well developed nucleus, mitochondria. And the basal region of cell contains large lipid-, protein droplets and numerous glycogen granules. The basal lamina is located between the basal membrane and muscle bundle, providing barrier between the epithelium and the hemolymph. The epithelium is surround by the subepithelial space and muscles. The subepithelial space, which is composed of fibrous connective tissue is innervated by many tracheoles and axon.