• Title/Summary/Keyword: Lipid membrane

Search Result 544, Processing Time 0.028 seconds

The Immunosuppressive Potential of Cholesterol Sulfate Through T Cell Microvilli Disruption

  • Jeong-Su Park;Ik-Joo Chung;Hye-Ran Kim;Chang-Duk Jun
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.29.1-29.23
    • /
    • 2023
  • Cholesterol (CL) is required for various biomolecular production processes, including those of cell membrane components. Therefore, to meet these needs, CL is converted into various derivatives. Among these derivatives is cholesterol sulfate (CS), a naturally produced CL derivative by the sulfotransferase family 2B1 (SULT2B1), which is widely present in human plasma. CS is involved in cell membrane stabilization, blood clotting, keratinocyte differentiation, and TCR nanocluster deformation. This study shows that treatment of T cells with CS resulted in the decreased surface expression of some surface T-cell proteins and reduced IL-2 release. Furthermore, T cells treated with CS significantly reduced lipid raft contents and membrane CLs. Surprisingly, using the electron microscope, we also observed that CS led to the disruption of T-cell microvilli, releasing small microvilli particles containing TCRs and other microvillar proteins. However, in vivo, T cells with CS showed aberrant migration to high endothelial venules and limited infiltrating splenic T-cell zones compared with the untreated T cells. Additionally, we observed significant alleviation of atopic dermatitis in mice injected with CS in the animal model. Based on these results, we conclude that CS is an immunosuppressive natural lipid that impairs TCR signaling by disrupting microvillar function in T cells, suggesting its usefulness as a therapeutic agent for alleviating T-cell-mediated hypersensitivity and a potential target for treating autoimmune diseases.

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Changes in the Membrane Properties of Zygosaccharomyces rouxii in Response to Osmotic Stress (삼투압 스트레스에 대응하는 Zygosaccharomyces rouxii의 막성질의 변화)

  • 구니아기호소노;류병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.1
    • /
    • pp.101-107
    • /
    • 1993
  • Zygosaccharomyces rouxii is a salt-tolerant yeast which plays an important role during the ripening stage of soy sauce fermentation. Z. rouxii used in the experiment could grow in YPD (1 % yeast extract, 2% peptone and 2% glucose, pH5.0) medium with 18% (w/v) NaCl, whereas Saccharomyces cerevisiae could only grow in YPD medium with less than 8% NaCl. In the presence of 15% NaCl, Z. rouxii accumulates a large amount of glycerol as a compatible solute within the cells in the exponential phase. It is a characteristic of salt-tolerant yeasts. From the chemical analyses on membrane lipid fluidity, the membrane structure of the cells grown in 15% NaCl was suggested to become more rigid and its fluidity was decreased to keep glycerol within the cells in response to surrounding medium with high concentrations of salt.

  • PDF

Ultrastructural Process of Protoplast Fusion Between Lentinula edodes and Coriolus versicolor

  • Kim, Chae-Kyun;Kim, Byong-Kak
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.15-18
    • /
    • 2001
  • Protoplast fusion is a useful technique for establishing fungal hybrids to overcome the natural barriers. The ultrastructure of protoplast and its fusion process were observed using a scanning electron microscopy(SEM) and a transmission electron microscopy(TEM). The protoplasts were variable in size from $0.5{\sim}15{\mu}m$ in diameter, and the mean diameter was about $3{\sim}5{\mu}m$. It was impossible to discriminate protoplasts of Lentinula edodes from protoplasts of Coriolus versicolor by size and surface structure. Big aggregates of the dehydrated protoplasts were observed, after polyethylene glycol 4000 treatment. Nucleus, mitochondria, lipid granules and various vesicles having granules were scattered in the cytoplasm. The vesicles were heterogeneous in size and vary from one protoplast to another. The fused membrane layer of the two protoplasts was observed. Time protoplast membrane contact and reorganization of membrane components were essential condition for protoplast fusion. Transmission electron micrograph showed fused protoplasts and flattening of the cells in the area of the membrane contact. We hope that our electron microscopic observations provide some insights into the understanding of the fusion process of protoplast in fungi.

  • PDF

Change in $Na^+-K^+$-ATPase Activity in Regressive Corpus Luteal Membrane (황체퇴화시 황체막 $Na^+-K^+$-ATPase 활성도의 변화)

  • Kim, In-Kyo;Yeoun, Dong-Soo;Lee, Syng-Ill
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.111-117
    • /
    • 1982
  • Slices of rat corpora lutea(CL) incubated with. prostaglandin $F_{{2{\alpha}}}(PGF_{2{\alpha}})$ in Krebs-Hensenleit (K-H) Ringer solution showed a decrease in $Na^+-K^+$-ATPase activity after 60 min of incubation. However, $PGF_{2{\alpha}}$ in vitro did not alter $Na^+-K^+$-ATPase activity of isolated luteal membrane fractions. Following $PGF_{2{\alpha}}$ induced in vivo luteal regression, reduction of Vmax an elevation of the activation energy above transition temperature of the lipid phase of the membrane occurred without changes of Km, optimum pH and transition temperature. These results suggest that reduction of $Na^+-K^+$-ATPase activity after $PGF_{2{\alpha}}$ treatment may be due to the reduction of the number of enzyme molecules or to masking of the active site of the enzyme without any change in enzyme characteristics. In addition, a change in membrane bound enzyme activity may be an early step in $PGF_{2{\alpha}}$ induced luleolysis.

  • PDF

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Effects of Vitamin E supplement and Perilla oil on the Cytochrome P-450 contents and Fatty acid composition in Rat Hepatocarcinogenesis

  • Kim, Sookhee;Oum, Jungin;Choi, Haymie
    • Culinary science and hospitality research
    • /
    • v.4
    • /
    • pp.129-146
    • /
    • 1998
  • The effects of vitamin E supplement on 15%(w/w diet) perilla or corn oils were studied in rat hepatocellular chemical carcinogenesis induced by modified Solt & Farber model, which consists of 20mg/kg body weight diethylintrosamine(DEN) injection, 3 weeks feeding of 0.02%2-acetylaminofluorene(2-AAF) and partial hepatectomy. The area of placental glutathione S-transferase(GST-P) positive foci tended to be smaller in perilla oil group had lower thiobarbituric acid reactive substances(TBARS) CONTENT. Fatty acid compositions in microsomal membrane were reflected by dietary fatty acid compositions, and not affected by carcinogen treatment or vitamin E supplement. By vitamin E supplement, linolenic acid contents of perilla oil group were much increased. By carcinogen treatment, membrane stability decreased significantly in corn oil, but maintained in perilla oil groups Vitamin E supplemental effect was noticed only in the corn-carcinogen group. Perilla oil may prevent hepatocarcinogenesis by maintaining membrane stability and by reducing cytochrome P-450 content. Vitamin E supplement did not seem to have the effect on hepatocarcinogenesis, but prevented lipid peroxidation, reduced cytochrome P-450 content and maintained membrane stability.

  • PDF

Fuctional Relationship between Rate of Fatty Acid Oxidation and Carnitine Palmitoyl Transferase I Activity in Various Rat Tissues

  • Cho, Yu-Lee;Do, Kyung-Oh;Kwon, Tae-Dong;Jang, Eung-Chan;Lee, Keun-Mi;Lee, Suck-Kang;Kim, Jong-Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.207-210
    • /
    • 2003
  • Lipids play many structural and metabolic roles, and dietary fat has great impact on metabolism and health. Fatty acid oxidation rate is dependent on tissue types. However there has been no report on the relationship between the rate of fatty acid oxidation and carnitine transport system in outer mitochondrial membrane of many tissues. In this study, the rate of fatty acid oxidation and carnitine palmitoyltransferase (CPT) I activity in the carnitine transport system were measured to understand the metabolic characteristics of fatty acid in various tissues. Palmitic acid oxidation rate and CPT I activity in various tissues were measured. Tissues were obtained from the white and red skeletal muscles, heart, liver, kidney and brain of rats. The highest lipid oxidation rate was demonstrated in the cardiac muscle, and the lowest oxidation rate was in brain. Red gastrocnemius muscle followed to the cardiac muscle. Lipid oxidation rates of kidney, white gastrocnemius muscle and liver were similar, ranging from 101 to 126 DPM/mg/hr. CPT I activity in the cardiac muscle was the highest, red gastrocnemius muscle followed by liver. Brain tissue showed the lowest CPT I activity as well as lipid oxidation rate, although the values were not significantly different from those of kidney and white gastrocnemius muscle. Therefore, lipid oxidation rate was highly (p<0.001) related to CPT I activity. Lipid oxidation rate is variable, depending on tissue types, and is highly (p<0.001) related to CPT I activity. CPT I activity may be a good marker to indicate lipid oxidation capacity in various tissues.

Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo

  • Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Kim, Eun-A;Kim, Chul-Young;Jeon, You-Jin
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.313-323
    • /
    • 2015
  • Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlorotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a significantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic proteins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation. Therefore, these results suggest that PFF-A has excellent protective effects against ROS and lipid peroxidation induced by AAPH in both an in vitro Vero cell model and an in vivo zebrafish model.