• Title/Summary/Keyword: Lipid extracted microalgae

Search Result 16, Processing Time 0.024 seconds

Optimization of Lipid Extraction from Scenedesmus sp. Using Taguchi Approach (Scenedesmus sp.로부터 Taguchi 법을 이용한 지방추출의 최적화)

  • Kim, Na-Young;Oh, Sung-Ho;Choi, Woon-Yong;Lee, Hyeon-Yong;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.25 no.4
    • /
    • pp.371-378
    • /
    • 2010
  • For the biodiesel fuel production from microalgae, the lipid from wet and dry samples of green algae Scenedesmus sp. was extracted by using various solvents and pre-treatment methods. Extraction yield of the lyophilized sample was better than that of dry sample. Chloroform/methanol (2:1, v/v) and ultrasonication or homogenization method were also selected as the most effective solvent and pre-treatment methods for lipid extraction, respectively. Under these constraint conditions, optimization experiment of lipid extraction was investigated by Taguchi approach using orthogonal matrix $L_9$ ($3^4$) method. The optimum extraction conditions of lipid extraction was obtained at pre-treatment of homogenization, extraction time of 5 hour, temperature of $35^{\circ}C$, and solvent ratio of 1:20 (w/v). Yield of extraction at optimized condition was 20.55% and it was 96% of total lipid content (21.38%) of Scenedesmus sp.

Nannochloris eucaryotum growth: Kinetic analysis and use of 100% CO2

  • Concas, Alessandro;Lutzu, Giovanni Antonio;Locci, Antonio Mario;Cao, Giacomo
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.19-33
    • /
    • 2013
  • Microalgae are receiving an increasing attention because of their potential use as $CO_2$ capture method and/or as feedstock for biofuels production. On the other hand the current microalgae-based technology is still not widespread since it is characterized by technical and economic constraints that hinder its full scale-up. In such contest the growth kinetics of Nannochloris eucaryotum (a relatively unknown marine strain) in batch and semi-batch photobioreactors is quantitatively investigated with the aim of obtaining the corresponding kinetic parameters suitable for process engineering and its optimization. In particular the maximum growth rate was evaluated to be 1.99 $10^{-3}\;h^{-1}$. Half saturation concentrations for nitrates ($K_N$) and phosphates uptake ($K_P$) were evaluated as 5.4 $10^{-4}\;g_N\;L^{-1}$ and 2.5 $10^{-5}\;g_P\;L^{-1}$, respectively. Yield factors for nitrogen ($Y_N$) and phosphorus ($Y_P$) resulted to be 5.9 $10^{-2}\;g_N\;g^{-1}$ biomass and 6.0 $10^{-3}\;g_P\;g^{-1}{_{biomass}}$, respectively. The possibility of using 100% (v/v) $CO_2$ gas as carbon source is also evaluated for the first time in the literature as far as N. eucaryotum is concerned. The strain showed a good adaptability to high concentrations of dissolved $CO_2$ as well as to low pH. The lipid content under 100% $CO_2$ is about 16.16 %wt $wt^{-1}$ and the fatty acid methyl esters composition of the extracted oil is in compliance with the European regulation for quality biodiesel.

Optimization of Microwave-Assisted Pretreatment Conditions for Enzyme-free Hydrolysis of Lipid Extracted Microalgae (탈지미세조류의 무효소 당화를 위한 마이크로파 전처리 조건 최적화)

  • Jung, Hyun jin;Min, Bora;Kim, Seung Ki;Jo, Jae min;Kim, Jin Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.229-239
    • /
    • 2018
  • The purpose of this study was to effectively produce the biosugar from cell wall of lipid extracted microalgae (LEA) by using microwave-assisted pretreatment without enzymatic hydrolysis process. Response surface methodology (RSM) was applied to optimization of microwave-assisted pretreatment conditions for the production of biosugar based on enzyme-free process from LEA. Microwave power (198~702 W), extraction time (39~241 sec), and sulfuric acid (0~1.0 mol) were used as independent variables for central composite design (CCD) in order to predict optimum pretreatment conditions. It was noted that the pretreatment variables that affect the production of glucose (C6) and xylose (C5) significantly have been identified as the microwave power and extraction time. Additionally, the increase in microwave power and time had led to an increase in biosugar production. The superimposed contour plot for maximizing dependent variables showed the maximum C6 (hexose) and C5 (pentose) yields of 92.7 and 74.5% were estimated by the predicted model under pretreatment condition of 700 w, 185.7 sec, and 0.48 mol, and the yields of C6 and C5 were confirmed as 94.2 and 71.8% by experimental validation, respectively. This study showed that microwave-assisted pretreatment under low temperature below $100^{\circ}C$ with short pretreatment time was verified to be an effective enzyme free pretreatment process for the production of biosugar from LEA compared to conventional pretreatment methods.

Extraction of Lipids from Microalgae Using Polar and Nonpolar Bi-solvent Systems (이성분 용매 추출에 의한 미세조류로 부터의 바이오디젤용 지질 분리)

  • Hong, Yeon-Ki;Kim, Jeong-Bae;Ng, K.Y. Simon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Various single solvents were tested to find the effective solvent for the extraction of algae oil from wet-form Chlorella minutissima. In the case of single solvents, their extractabilities for algae oil were increased with their polarity because the water in wet algae cell is to form a solvent shell around the lipids. Based on these results, the wet-form algae samples were treated with a polar alcohol solvent and then a nonpolar solvent was added in algae residue. In the algae oil extraction by ethanol/n-hexane, total lipid contents were 40-50% and composition of triglyceride in extracted oil was 46.50%. Considering solvent toxicity of conventional solvent mixture such as chloroform and methanol for algae oil extraction, the ethanol/n-hexane system was identified as the effective one for the oil extraction from wet-form Chlorella minutissima.

Lipid Extraction from Spirulina platensis using Supercritical Carbon Dioxide and Analysis of Fatty Acid Compositions in Extracts (초임계 이산화탄소를 이용한 Spirulina platensis로부터 지질추출 및 지방산 조성 분석)

  • JOO Dong-Sik;CHO Man-Gi;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.417-422
    • /
    • 1998
  • This study was performed to obtain information about the extraction conditions of lipids from microalgae, Spirulina platensis, using supercritical fluid $CO_2$. Regardless of extraction temperature conditions, the extracted lipid contents increased as pressure increased, but decreased at 8500 psi on each temperature. The highest yield of extracted lipid content showed in the condition of 5500psi at $50^{\circ}C$, and extracted lipid content was about $20\%$. In same pressure the contents of C18 : 2 and C20 : 0 increased as temperature increased, but fatty acids composition were $60\~75\%$ saturated, $12\~20\%$ monounsaturated and $13\~31\%$ polyunsaturated regardless of extraction conditions. The C18 : 3 was only detected in the condition of 5500psi at $50^{\circ}C$ but the content was very little.

  • PDF

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.