• Title/Summary/Keyword: Lipid Synthesis

Search Result 365, Processing Time 0.023 seconds

Effect of Samhwangsasim-tang and Daehwanghwangryunsasim-tang on Palmitate-induced Lipogenesis in HepG2 cells (Palmitic acid로 지방 축적을 유도한 HepG2 cell에 대한 삼황사심탕과 대황황련사심탕의 효과 연구)

  • Um, Eun sik;Kim, Young Chul
    • The Journal of Korean Medicine
    • /
    • v.37 no.1
    • /
    • pp.62-76
    • /
    • 2016
  • Objectives: The goal of this study was to investigate the anti-lipogenic effects of Samhwangsasim-tang(SHT), Daehwanghwangryunsasim-tang(DHT) aqueous extract on HepG2 cells with palmitate. Materials and Methods: HepG2 cells treated with palmitate were used in this study as hepatic steatosis model. Cells were treated with different concentrations of SHT, DHT aqueous extract for 24 hours. Cell viability and cytotoxicity were analyzed by MTT assay. Expressions of Bcl-2, Bax, Survivin, P21, TGF-${\beta}1$, LXR-${\alpha}$, ChREBP, ACC1, SCD1 mRNA were determined by Real-time PCR. Apoptosis of cells was detected by ELISA and FACS. Expression level of caspase-3 was studied by Western blot. Lipid accumulation was indicated by Oil Red O staining. Results: SHT, DHT aqueous extract had no cytotoxicity, but decreased palmitate-induced lipid accumulation in HepG2 cells. SHT aqueous extract suppressed fatty acid synthesis by inhibiting LXR-${\alpha}$, ChREBP, SCD1 activation and increasing TGF-${\beta}1$ expression level. DHT aqueous extract also suppressed fatty acid synthesis by decreasing ChREBP expression and increasing TGF-${\beta}1$ expression. Apoptosis of lipid accumulated cells was increased by enhanced activities of P21, caspase-3 and inhibited expressions of Bcl-2, Survivin. Conclusions: These results suggest that SHT and DHT have an anti-lipogenic effects on lipid accumulation of hepatic cell. Also SHT and DHT have an efficacy to increase apoptosis of adipocyte without cytotoxicity. Therefore, SHT and DHT might have potential clinical applications for treatment of hepatic steatosis.

Effects of Light Quality of a Light-Emitting Diode (LED) on Carbohydrate, Protein, and Lipid Contents of Tetraselmis suecica and T. tetrathele (발광다이오드(LED) 파장에 따른 Tetraselmis suecica와 T. tetrathele의 탄수화물, 단백질 및 지질 함량에 미치는 영향)

  • Kyong Ha Han;Seok Jin Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • To establish a culture system with enhanced cellular nutrition, we investigated the effects of light quality (blue, 450 nm; yellow, 590 nm; and red, 630 nm) of a light-emitting diode (LED) on the biochemical composition of Tetraselmis suecica and T. tetrathele. The protein content of both species was higher (42-69%) than the content of other biochemical substances under all wavelengths. Carbohydrate, protein, and lipid contents were higher under the yellow wavelength, which showed a low growth rate, than those under other wavelengths. The contents of all biochemical substances were low under the red wavelength, which showed a high growth rate. These results indicated that protein synthesis occurs in response to decreased cell division rate, while lipid and carbohydrate synthesis occurs owing to altered chemical composition and enzymatic activity. Therefore, we suggested a two-phase LED culture system, which emitted red LED during the early-middle exponential phase and yellow LED during the late exponential and stationary phases, to increase the yield of useful biochemical substances of T. suecica and T. tetrathele.

Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives

  • Sujeong Je;Yasuyo Yamaoka
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1357-1372
    • /
    • 2022
  • Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.

Lipid accumulation mediated by adiponectin in C2C12 myogenesis

  • Yin, Changjun;Long, Qinqiang;Lei, Ting;Chen, Xiaodong;Long, Huan;Feng, Bin;Peng, Yin;Wu, Yanling;Yang, Zaiqing
    • BMB Reports
    • /
    • v.42 no.10
    • /
    • pp.667-672
    • /
    • 2009
  • Plasma concentrations of adiponectin have been shown to be decreased in patients with obesity, cardiovascular diseases, hypertension and metabolic syndrome. Recent studies have found that adiponectin reduces lipid accumulation in macrophage foam cells which may impact the development of atherosclerosis. However, it remains unclear whether adiponectin is involved in the process of lipid accumulation during myogenesis. Using C2C12 myoblasts, we investigated the effect of adiponectin on intramyocellular lipid accumulation during myogenesis. The results showed that intracellular lipid accumulation is significantly decreased during C2C12 differentiation, apparently due to increased fatty acid oxidation and decreased fatty acid synthesis during this process. C2C12 cells transiently transfected with adiponectin gene showed reduced lipid accumulation as compared to controls. Further experiments demonstrated that adiponectin can suppress lipid accumulation by increasing fatty acid oxidation during C2C12 myogenesis.

Effects of Radix Curcumae Aromaticae Extract in Rat Cardiac Endothelial Cells (울금 추출물이 배양 심장내피세포에 미치는 영향)

  • Kwon Kang Beom;Kim In Seob;Kim Hyun Gyu;Choi Ki Bang;Kim Yong Bok;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 2003
  • To test the protective effect of Radix Curcumae Aromaticae (RCA) on the damage of cardiac endothelial cells by xanthine oxidase (XO)/hypoxanthine (HX)-induced oxygen free radical, Neutral Red (NR), thiobarbituric acid reactive substances (TSARS), and DNA synthesis assay were used in the presence of RCA extract. The results of these experiments were obtained as follows ; Cardiac endothelial cells treated with XO/HX showed the cytotoxicity such as decreases in viability and DNA synthesis, a increase in lipid peroxidation. Cardiac endothelial cells pretreated with RCA extract protected the increase of lipid peroxidation by XO/HX. Cardiac endothelial cells pretreated with RCA extract inhibited the decrease of DNA synthesis by XO/HX. These results show that XO/HX elicits toxic effects in cultured cardiac endothelial cells derived from neonatal rat, and suggest that RCA extract is very effective in the prevention of XO/HX-induced toxicity.

Synthesis of Permeability-Controllable Polymerized Vesicles (투과도 조절용 고분자화된 Vesicles의 합성)

  • Shin, Jae-Sup
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.64-69
    • /
    • 1991
  • A lipid containing a 1, 2-dithiolane group was synthesized, and polymerized vesicle was prepared from the vesicle of this lipid by ring-opening polymerization. Reaction rate of the polymerization was monitored by UV absorption, and the results showed that it followed the first order kinetics and the rate constant $3.84{\times}10^{-2}min^{-1}$. Permeation rate of sucrose through the polymerized vesicle was $4.7{\times}10^{-8}cm\;hr^{-1}$, which is 1.5 times lower than that of monomeric analog.

  • PDF

LIPID-SOLUBLE VC DERIVATIVE ASCORBIC ACID TETRA-2-HEXYLDECANOATE (VC-IP) AS AN ANTI-AGING AGENT

  • Obayashi, K.;Ochiai, Y.;Ochiai, Y.;Masaki, H.;Kurata, Y.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.313-319
    • /
    • 2003
  • It is well known that ascorbic acid (VC) is an important factor for several physiological reactions. In the skin, VC works as an anti-aging agent due to removing of oxidative stress generated by UV irradiation and stimulation of collagen synthesis. Thus, developing more effective VC derivatives is an important issue in creating anti-aging skin care products. Our study succeeded to develop a novel ascorbic acid derivative, ascorbic acid tetra-2-hexyldecanoate (VC-IP), which is a lipid-soluble pro-VC. The purpose of this study was to indicate the effects of VC-IP as pro-VC and anti-aging agent. First, it was examined whether VC-IP is converted to VC in physiological conditions. Since VC was detected from the cell extracts treated with VC-IP, it was indicated that VC-IP is a pro- VC.(omiited)

  • PDF

Comprehensive Lipid Profiling Recapitulates Enhanced Lipolysis and Fatty Acid Metabolism in Intimal Foamy Macrophages From Murine Atherosclerotic Aorta

  • Jae Won Seo;Kyu Seong Park;Gwang Bin Lee;Sang-eun Park;Jae-Hoon Choi;Myeong Hee Moon
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.28.1-28.20
    • /
    • 2023
  • Lipid accumulation in macrophages is a prominent phenomenon observed in atherosclerosis. Previously, intimal foamy macrophages (FM) showed decreased inflammatory gene expression compared to intimal non-foamy macrophages (NFM). Since reprogramming of lipid metabolism in macrophages affects immunological functions, lipid profiling of intimal macrophages appears to be important for understanding the phenotypic changes of macrophages in atherosclerotic lesions. While lipidomic analysis has been performed in atherosclerotic aortic tissues and cultured macrophages, direct lipid profiling has not been performed in primary aortic macrophages from atherosclerotic aortas. We utilized nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry to provide comprehensive lipid profiles of intimal non-foamy and foamy macrophages and adventitial macrophages from Ldlr-/- mouse aortas. We also analyzed the gene expression of each macrophage type related to lipid metabolism. FM showed increased levels of fatty acids, cholesterol esters, phosphatidylcholine, lysophosphatidylcholine, phosphatidylinositol, and sphingomyelin. However, phosphatidylethanolamine, phosphatidic acid, and ceramide levels were decreased in FM compared to those in NFM. Interestingly, FM showed decreased triacylglycerol (TG) levels. Expressions of lipolysis-related genes including Pnpla2 and Lpl were markedly increased but expressions of Lpin2 and Dgat1 related to TG synthesis were decreased in FM. Analysis of transcriptome and lipidome data revealed differences in the regulation of each lipid metabolic pathway in aortic macrophages. These comprehensive lipidomic data could clarify the phenotypes of macrophages in the atherosclerotic aorta.

Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

  • Zhu, Shuang;Park, Soyoung;Lim, Yeseo;Shin, Sunhye;Han, Sung Nim
    • Nutrition Research and Practice
    • /
    • v.10 no.5
    • /
    • pp.477-486
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS: Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS: In intestine, significantly lower Cd36 mRNA expression (P<0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P<0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS: PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice.