• 제목/요약/키워드: Lipid Synthesis

검색결과 363건 처리시간 0.03초

Protective Mechanism of Nitric Oxide and Mucus against Ischemia/Reperfusion-Induced Gastric Mucosal Injury

  • Kim, Hye-Young;Nam, Kwang-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.511-519
    • /
    • 1998
  • This study investigated the role of nitric oxide on the oxidative damage in gastric mucosa of rats which received ischemia/reperfusion and its relation to mucus. Nitric oxide synthesis modulators such as L-arginine and $N^G-nitro-L-arginine$ methyl ester, and sodium nitroprusside, a nitric oxide donor, were injected intraperitoneally to the rats 30 min prior to ischemia/reperfusion which was induced by clamping the celiac artery and the superior mesenteric artery for 30 min and reperfusion for 1 h. Lipid peroxide production, the contents of glutathione and mucus, and glutathione peroxidase activities of gastric mucosa were determined. Histological observation of gastric mucosa was performed by using hematoxylin-eosin staining and scanning electron microscopy. The result showed that ischemia/reperfusion increased lipid peroxide production and decreased the contents of glutathione and mucus as well as glutathione peroxidase activities of gastric mucosa. Ischemia/reperfusion induced gastric erosion and gross epithelial disruption of gastric mucosa. Pretreatment of L-arginine, a substrate for nitric oxide synthase, and sodium nitroprusside prevented ischemia/reperfusion-induced alterations of gastric mucosa. However, $N^G-nitro-$ L- arginine methyl ester, a nitric oxide synthase inhibitor, deteriorated oxidative damage induced by ischemia/reperfusion. In conclusion, nitric oxide has an antioxidant defensive role on gastric mucosa by maintaining mucus, glutathione, and glutathione peroxidase of gastric mucosa.

  • PDF

The Synthesis and Evaluation of Pendant Oligosaccharide-Lipid Side Chain Copolymer

  • Nam, Hye-Sung;Kim, Hyun-Joo;Nam, Kwang-Woo;Chung, Dong-June
    • Macromolecular Research
    • /
    • 제11권2호
    • /
    • pp.115-121
    • /
    • 2003
  • In this research, the in vitro anti-thrombogenecity of artificial materials was evaluated using hydrophilic/hydrophobic copolymers containing oiligosaccharide as hydrophilic moiety and phospholipid as hydrophobic moiety respectively. N-(p-vinylbenzyl)-[O-$\alpha$-D-glucopyranosyl-(1longrightarrow4)]$_{n-1}$-D-glucoamide(VM7A) was (VM7 A) was adopted as hydrophilic oligosaccharide and 2-acryloxybutyl-2-(triethylammonium)ethyl phosphoric acid (HBA-choline) was adopted as hydrophobic phospholipid. Copolymers having various monomer feeding molar ratios were synthesized through radical polymerization. The synthesized copolymers were identified using FT-IR, $^1$H-NMR, XPS, and DSC. The surface energy of the copolymers were evaluated by dynamic contact angle (DCA) method and checked different roles of VM7A as hydrophilic moiety and HBA-choline as hydrophobic moiety on surface. The surface morphological differences between hydrated and unhydrated surfaces of copolymers were observed and evaluated using Am. The platelets were separated from canine whole blood by centrifugation and adopted to the anti-thromobogenecity test of the copolymers. From the results, we find out that as VM7A ratio increases, so did anti-thrombogenecity. Such results show the possibility of using these copolymers as blood compatible materials in living body.y.

젖소에서 epinephrine 및 insulin에 의한 대사 조절 (Roles of Epinephrine and Insulin in the Regulation of Metabolism in Dairy Cow)

  • 김진욱
    • 농업생명과학연구
    • /
    • 제43권4호
    • /
    • pp.15-20
    • /
    • 2009
  • 젖소의 분만 전후기는 일반적으로 전환기라고 칭하며 분만후 유생산을 준비하기 위해 동물체내 대사 및 생리적 상태가 급격히 변화하는 시기라 할 수 있다. 젖소는 이 시기에 간조직에서 당신합성을 통해 유당합성을 위한 glucose의 생산을 촉진하고, 지방조직에서는 분만 전부터 지질을 축적하고 비유개시에 맞추어 혈중 NEFA (nonesterified fatty acid)의 농도를 증가시켜 유지방 합성을 준비 한다. 이러한 대사조절에 epinephrine 및 insulin이 조절 호르몬으로 작용하여 유생산을 위한 탄수화물 및 지질대사를 변화시키고 사료 섭취량의 부족에 기인한 전체 에너지의 감소를 체내 영양소의 재분배로 충족시킨다.

Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers

  • Fiorentini, Giovani;Carvalho, Isabela P.C.;Messana, Juliana D.;Canesin, Roberta C.;Castagnino, Pablo S.;Lage, Josiane F.;Arcuri, Pedro B.;Berchielli, Telma T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1583-1591
    • /
    • 2015
  • The present study was conducted to determine the effect of lipid sources with different fatty acid profiles on nutrient digestion and ruminal fermentation. Ten rumen and duodenal fistulated Nellore steers (268 body weight${\pm}27kg$) were distributed in a duplicated $5{\times}5$ Latin square. Dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF; Lactoplus), and whole soybeans (WS). The roughage feed was corn silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The higher intake of DM and organic matter (OM) (p<0.001) was found in animals on the diet with PF and WF (around 4.38 and 4.20 kg/d, respectively). Treatments with PO and LO decreased by around 10% the total digestibility of DM and OM (p<0.05). The addition of LO decreased by around 22.3% the neutral detergent fiber digestibility (p = 0.047) compared with other diets. The higher microbial protein synthesis was found in animals on the diet with LO and WS (33 g N/kg OM apparently digested in the rumen; p = 0.040). The highest C18:0 and linolenic acid intakes occurred in animals fed LO (p<0.001), and the highest intake of oleic (p = 0.002) and C16 acids (p = 0.022) occurred with the diets with LO and PF. Diet with PF decreased biohydrogenation extent (p = 0.05) of C18:1 n9,c, C18:2 n6,c, and total unsaturated fatty acids (UFA; around 20%, 7%, and 13%, respectively). The diet with PF and WF increased the concentration of $NH_3-N$ (p<0.001); however, the diet did not change volatile fatty acids (p>0.05), such as the molar percentage of acetate, propionate, butyrate and the acetate:propionate ratio. Treatments PO, LO and with WS decreased by around 50% the concentration of protozoa (p<0.001). Diets with some type of protection (PF and WS) decreased the effects of lipid on ruminal fermentation and presented similar outflow of benefit UFA as LO.

항산화 활성과 Melanoma 세포에서 멜라닌조절에 대한 Oenanthe javanica 에탄올 추출액의 효과 (Effect of Oenanthe javanica Ethanolic Extracts on Antioxidant Activity and Melanogenesis in Melanoma Cells)

  • 권은정;김문무
    • 생명과학회지
    • /
    • 제23권12호
    • /
    • pp.1428-1435
    • /
    • 2013
  • 본 연구의 목적은 melanocyte (B16F1)에서 quercetin과 kaempferol을 포함하는 미나리 에탄올 추출물(OJE)의 멜라닌 합성효과에 미치는 영향을 조사한 것이다. OJE가 세포수준에서 멜라닌 합성을 억제하는지를 조사하기 위하여 여러 농도의 OJE 존재 하에서 B16F1세포를 배양하였다. 현재 연구에서 DPPH radical scavenging, reducing power, lipid peroxidation 및 DNA oxidation에 미치는 항산화 효과는 cell free system에서 평가되었다. 더욱이 멜라닌 생성에 대한 OJE 효과는 dopaquinone (DOPA) assay 및 tyrosinase 활성으로 결정되었다. 뿐만 아니라 superoxide dismutase (SOD)-1, -2, glutathione reductase (GSH)와 같은 항산화 효소 및 tyrosinase의 단백질발현이 western blot 분석을 이용하여 평가되었다. 본 연구에서 OJE는 지질과산화 억제효과를 나타내었고 fenton 반응에 의해서 생성되는 hydroxyl radical에 의하여 유발되는 DNA 산화를 보호하였다. OJE는 50 ${\mu}g/ml$ 이상에서 멜라닌 합성을 증가시켰고 tyrosinase 활성도 50 ${\mu}g/ml$에서 검출되었다. Western blot 분석에서는 OJE가 농도에 비례하여 tyrosinase SOD-1, -2 및 GSH의 발현 수준을 증가시켰다. 이러한 발견들은 항산화 효과를 가진 OJE가 melanocyte에서 tyrosinase 활성과 melanin 생성을 조절할 수 있어 피부를 산화스트레스로부터 보호할 수 있다는 것을 암시하고 있다.

Discrimination of Astaxanthin Fed Laying Hens and Their Peroxidated Carcasses by Electronic Nose

  • Kwon, Young-An;Lee, Chan-Yong;Lee, Bong-Duk;Choi, Seung-Hyun;An, Gil-Hwan
    • 한국가금학회지
    • /
    • 제37권3호
    • /
    • pp.215-219
    • /
    • 2010
  • The applicability of electronic nose was tested to detect lipid peroxidation in chickens and to measure antioxidant effect of astaxanthin in chicken carcasses. Two sources of astaxanthin were fed to 62-wk-old spent laying hens to improve meat quality: natural astaxanthin (NA) from the red yeast, Phaffia rhodozyma, and synthetic astaxanthin (SA) from chemical synthesis. One hundred forty four ISA Brown laying hens were used in a 6-wk feeding trial. Three treatments consisted of the basal diet (control), SA (100 mg astaxanthin/kg basal diet) and NA (50 mg astaxanthin/kg basal diet). The astaxanthin levels of SA and NA were set to give a similar degree of skin pigmentation. After 6-wk feeding of astaxanthin, the skins from NA and SA were discriminated from the control by electronic nose. However, electronic nose failed to distinguish between SA and NA skins after 6-wk feeding. The astaxanthin level differences between skins of SA and NA were not remarkable during the 6-wk trial. The lipid peroxide formation in skin was significantly decreased by SA but not by NA. The antioxidation effect of SA was detected by electronic nose because SA skin was discriminated from others. NA was a better pigmentation agent than SA, but the reverse was true in antioxidation. Electronic nose is applicable for detecting astaxanthin in chicken, and meat off-flavor caused by lipid peroxidation during storage.

고지방 식이로 유도된 비만 생쥐에서 쑥부쟁이 에탄올 추출물의 항비만 효과 (Anti-obesity Effect of Aster Yomena Ethanol Extract in High Fat Diet-induced Obese Mice)

  • 이호재;김현식;서상완
    • 동의생리병리학회지
    • /
    • 제31권6호
    • /
    • pp.348-355
    • /
    • 2017
  • Aster yomena (AY) have been used as a traditional medicine to treat cough, bronchial asthma, and insect bites in Korea. In this study, we evaluated the inhibition of adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice by AY ethanol extract. Lipid accumulation measurement indicates that AY markedly inhibited adipogenesis in a dose-dependent manner. qRT-PCR results demonstrated that the mRNA expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor-${\gamma}$ ($PPAR-{\gamma}$) in 3T3-L1 cells were significantly down-regulated by AY treatment. And inhibited the expression of FAS, a protein responsible for lipid synthesis, transport and storage. Oral administration of AY (100, 250, and 500 mg/kg, P.O/daily for 4 weeks) was conducted in high-fat diet induced obese mice and C57BL/6 mice. AY was orally administered for 4 weeks to extract liver and epididymal fat, and hematoxylin and eosin staining(H&E staining) was observed. Observation showed that the fat concentration of liver tissue tended to decrease dose-dependently and decreased significantly at 500 mg/kg concentration. The AY-administered group of HFD-induced mice had a lower body weight gain, along with decreased triglycerides and total cholesterol compared with the control mice, however, the HDL-cholesterol/total cholesterol ratio was increased. These results indicate that AY exhibits anti-obesity effects in obese mice by decreasing in serum lipid levels and lipogenesis related gene.

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권11호
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Sexual Maturation May Affect the Levels of n-6 PUFA in Muscle Tissues of Male Mice

  • Park, Chang Seok;Choi, Inho;Park, Young Sik
    • Journal of Animal Science and Technology
    • /
    • 제55권2호
    • /
    • pp.147-153
    • /
    • 2013
  • Lipid metabolism in mature male mice may be different from immature male mice, but the relationship of lipid metabolism, especially n-6 fatty acid metabolism, and sexual maturation is not clearly established. This study was carried out to elucidate whether sexual maturation may affect the metabolism of functional n-6 fatty acids of lipid components by investigating the composition of fatty acids in the longissimus muscle tissues of mature and immature male mice with GC and analyzing the expression of genes and proteins for synthesis of n-6 fatty acids with real-time PCR and western blotting, respectively. Mature male mice showed significantly higher testosterone level in the sera. Similarly, n-6 fatty acids, levels of linoleic acid (LA 18:2n-6) and total n-6 PUFA (Polyunsaturated fatty acids) were increased, but the levels of ${\gamma}$-linolenic acid (GLA; 18:3n-6), dihomo-${\gamma}$-linolenic acid (DGLA; 20:3n-6) and arachidonic acid (AA; 20:4 n-6) were decreased in the mature male mice. mRNA levels of ${\Delta}5$-desaturase (FASD1) and elongase (ELOVL5) genes related to n-6 fatty acid metabolism increased. However, the level of FADS1 protein only increased in mature male mice. In conclusion, this study suggested that sexual maturation of male mice affected n-6 fatty acid metabolism by stimulating the expression of enzyme FADS1 of n-6 PUFA metabolism.

PPARα-Target Gene Expression Requires TIS21/BTG2 Gene in Liver of the C57BL/6 Mice under Fasting Condition

  • Hong, Allen Eugene;Ryu, Min Sook;Kim, Seung Jun;Hwang, Seung Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.140-149
    • /
    • 2018
  • The $TIS21^{/BTG2/PC3}$ gene belongs to the antiproliferative gene (APRO) family and exhibits tumor suppressive activity. However, here we report that TIS21 controls lipid metabolism, rather than cell proliferation, under fasting condition. Using microarray analysis, whole gene expression changes were investigated in liver of TIS21 knockout (TIS21-KO) mice after 20 h fasting and compared with wild type (WT). Peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$) target gene expression was almost absent in contrast to increased lipid synthesis in the TIS21-KO mice compared to WT mice. Immunohistochemistry with hematoxylin and eosin staining revealed that lipid deposition was focal in the TIS21-KO liver as opposed to the diffuse and homogeneous pattern in the WT liver after 24 h starvation. In addition, cathepsin E expression was over 10 times higher in the TIS21-KO liver than that in the WT, as opposed to the significant reduction of thioltransferase in both adult and fetal livers. At present, we cannot account for the role of cathepsin E. However, downregulation of glutaredoxin 2 thioltransferase expression might affect hypoxic damage in the TIS21-KO liver. We suggest that the $TIS21^{/BTG2}$ gene might be essential to maintain energy metabolism and reducing power in the liver under fasting condition.