• 제목/요약/키워드: Lipid Synthesis

검색결과 363건 처리시간 0.024초

Utilization of Substrate for the In vitro Lipid Synthesis in the Adipose Tissue of Hanwoo Steers

  • Song, M.K.;Sohn, H.J.;Hong, S.K.;Kim, H.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권11호
    • /
    • pp.1560-1563
    • /
    • 2001
  • An ability to utilize the substrates (acetate, glucose and lactate) in the lipid synthesis was measured in vitro with the adipose tissues of 4 locations (subcutaneous, SUBC; intramuscular, INTR; tail and kidney, KIDN) in 12 Hanwoo (Korean native cattle) steers (26 and 28 months of ages, mean body weight 638.6 kg). The rates of lipid synthesis from acetate were higher than those from glucose in SUBC and ITRA adipose tissues, respectively. In contrast, the rates of lipid synthesis from glucose were higher than those from acetate in the adipose tissues of tail and KIDN, respectively. Lactate utilization was lowest in all the locations while that of acetate or glucose had the different trends of utilization in the lipogenesis. The rate of lipid synthesis from acetate was highest in the SUBC adipose tissue but was lowest in the KIDN while that from glucose was also higher in the SUBC adipose tissue than in the other tissue locations. The rate of lipid synthesis from lactate, however, was highest in the tail adipose tissue among the locations.

Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the ER and lipid droplets promoting triacylglycerol synthesis

  • Lee, Yoo Jeong;Kim, Jae-woo
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.367-372
    • /
    • 2017
  • Monoacylglycerol acyltransferase 1 (MGAT) is a microsomal enzyme that catalyzes the synthesis of diacylglycerol (DAG) and triacylglycerol (TAG). However, the subcellular localization and catalytic function domain of this enzyme is poorly understood. In this report, we identified that murine MGAT1 localizes to the endoplasmic reticulum (ER) under normal conditions, whereas MGAT1 co-localize to the lipid droplets (LD) under conditions of enriching fatty acids, contributing to TAG synthesis and LD expansion. For the enzyme activity, both the N-terminal transmembrane domain and catalytic HPHG motif are required. We also show that the transmembrane domain of MGAT1 consists of two hydrophobic regions in the N-terminus, and the consensus sequence FLXLXXXn, a putative neutral lipid-binding domain, exists in the first transmembrane domain. Finally, MGAT1 interacts with DGAT2, which serves to synergistically increase the TAG biosynthesis and LD expansion, leading to enhancement of lipid accumulation in the liver and fat.

Intragastrically Applicated CCl4-Thiopental Sodium Enhanced Lipid Peroxidation and Liver Fibrosis (Cirrhosis) in Rat: Malonedialdehyde as a Parameter of Lipid Peroxidation Correlated with Hydroxyproline as a Parameter of Collagen Synthesis (Deposition)

  • Kim, Ki-Young;Cho, Syung-Eun;Yu, Byung-Soo
    • Toxicological Research
    • /
    • 제25권2호
    • /
    • pp.71-78
    • /
    • 2009
  • We investigated the pathogenesis of liver tissue damage during the lipid peroxidation and fibrogenesis with the observation of correlations between the parameters of collagen synthesis (and deposition) and lipid peroxidation in liver fibrosis (cirrhosis) rats. Rats were randomly divided into two groups, normal and $CCl_4$-thiopental sod. intoxicated group. And the one group was treated intragastrically with the mixture of $CCl_4$-thiopental sod. 3 times per week for 3 weeks. The liver tissue and sera were used for the measurement of hydroxyproline (HYP), malonedialdehyde (MDA) and superoxide dismutase (SOD). Biochemical parameters such as aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total-bilirubin and blood urea nitrogen (BUN) were measured. Additionally, the expression of collagen ${\alpha}1$(III) and $\beta$-actin mRNA was observed by RTPCR. The histological change in liver tissue was also observed by Masson's trichrome and H&E staining. Correlation analysis was carried by Spearman's rho method. All biochemical parameters except total-bilirubin were significantly higher in the $CCl_4$-thiopental sod. treated group than that of the normal group (p < 0.01). In the $CCl_4$-thiopental sod. treated group, Hyp as a parameter of collagen synthesis (deposition) and MDA as a metabolite of lipid peroxidation, were significantly elevated by 1.98 and 2.11 times higher than that of the normal group (p < 0.001) respectively. The activity of SOD in the $CCl_4$-thiopental sod. treated group is decreased significantly by 44.8% (p < 0.001). And collagen ${\alpha}1$(III) mRNA was more expressed in the $CCl_4$-thiopental sod. treated group than that of the normal group. However, the expression of $\beta$-actin mRNA is showed similar in both of groups. A good correlation was observed between the content of hyp and MDA concentration (r = 0.70, n = 40) in the two groups. And the correlation between the levels of hyp and SOD (r = -0.71, n = 25) is also reliable. However, no correlation were observed between MDA concentration and SOD (r = -0.40, n = 25) in the two groups. Elevated levels of MDA in $CCl_4$-thiopental sod. treated rats indicated enhancement of lipid peroxidation, which is accompanied by a decrease in SOD activity. Moreover, we could confirm that the parameters of collagen synthesis (and deposition) is in good correlation with the metabolite of lipid peroxidation (MDA) and the lipid peroxidation antagonizing enzyme (SOD). Hence, we propose that (1) lipid peroxidation and collagen synthesis (and deposition) could be enhanced by intragastrically application of $CCl_4$-thiopental sod. during a short terms. And (2) the intoxication of $CCl_4$-thiopental sod. could be used for monitoring of lipid peroxidation and collagen synthesis (and deposition) for test of antioxidant and antifibrotic agent.

Effect of Different Ratios of Concentrate and Roughage on Lipid Synthesis by Rumen Microorganisms In Vitro

  • Sasaki, H.;Horiguchi, K.;Takahashi, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권1호
    • /
    • pp.36-38
    • /
    • 2003
  • The effect of different feeding ratios of concentrate to roughage on ruminal lipid synthesis in vitro was examined. Three sheep fitted with a rumen fistula were fed three different ratios (8:2, 4:6 and 0:10) of concentrate and roughage, and their rumen liquor were used for incubation. $^{13}C$-labeled glucose or sodium acetate as substrate was added to cultures of rumen liquor, and they were incubated for 6 h. The total lipid in the culture of the rumen liquor was extracted, and the percentage of $^{13}C$ excess was analyzed. The percentage of $^{13}C$ excess recovered when incubated with glucose increased with increased ratio of concentrate in the diet. The values of cultures incubated with glucose were higher than those incubated with sodium acetate except the roughage-only feeding. In the roughage-only diet, the percentage of $^{13}C$ excess when incubated with sodium acetate was highest of all diets. The recovery percentage of $^{13}C$ from glucose increased with increased ratio of concentrate. The recovery percentage of $^{13}C$ from sodium acetate addition in only roughage feeding was highest among the three diets. The recovery percentage of $^{13}C$ from glucose was markedly higher than that of sodium acetate addition in all feedings. The results indicate that high concentrate feeding facilitates lipid synthesis by rumen microorganisms, and that glucose may be the precursor for lipid synthesis rather than acetic acid.

백굴채(白屈菜) 추출물의 피지생성 억제효과 (Inhibitory Effect of Extract of Chelidonii Harba on Sebum Synthesis)

  • 최두호;박시준;김호민;노성택;유일수;문연자;임규상;우원홍
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1561-1566
    • /
    • 2006
  • Sebum is secreted due to the effect of androgen, which start to be secreted at puberty. Androgens have profound effects on the physiology of the sebaceous gland, Using the human sebocyte cell line SZ95, we investigated the inhibitory effect of Chelidonii Harba (CH) on the subum production. Our results showed that numerous cytoplasmic lipid droplets were examined by Oil red staining and lipid droplets were increased markedly by testosterone. Cell viability was dose-dependently decreased by CH as compared with untreated cells, while total lipid content and cholesterol slightly were increased by CH. Testosterone significantly stimulated the synthesis of total lipid and the synthesis of specific sebaceous lipids such as cholesterol and triglyceride. Combined treatment with CH and testosterone resulted in a lower lipid synthesis than with testosterone alone. Especially cholesteol content was reduced by combined treatment with CH and testosterone. These results indicate that CH inhibits the testosterone-induced lipid synthesis in SZ95 cells and acts antagonistically to androgen at the cellular level.

피지선세포에서 Retinoic Acid의 피지생성억제효과 (Inhibitory Effect of Retinoic Acid on lipid Synthesis in Human Sebocyte)

  • 문연자;김윤석;권강주;이희섭;노성택;김양진;이장천;우원홍
    • 동의생리병리학회지
    • /
    • 제18권5호
    • /
    • pp.1317-1321
    • /
    • 2004
  • The differentiation of the sebaceous gland is remarkably species-specific and sebocytes may play crucial parts in the pathophysiologic processes and disorders of pilosebaceous unit SZ95 cell is an immortalized human sebaceous gland cell line that shows characteristics of normal human sebocytes, In this study, we investigated the effect of testosterone and the anti-androgenic effect of 13-cis-retinoic acid (13-cis-RA) on lipid synthesis in SZ95 cells. Cytoplasmic lipid droplets were shown by Oil-red staining. The majority of the SZ95 cells positively labeled with Oil-red dye, while HaCaT cells negatively labeled with Oil red dye. Total lipid level of SZ96 cells is higher 4 times than that of HaCat cells. Testosterone markedly increased 2 times lipid synthesis of SZ95 cells in compared with control. 13-cis-RA significantly inhibited lipid synthesis and cell proliferation in SZ95 cells. Combined treatment with testosterone and 13-cis-RA resulted in a lower total lipid levels than that with androgen alone. In conclusion, SZ95 cells well resembled the morphologic and functional characteritics of normal human sebocytes. This in vitro model could provide a valuable tool for the study of sebocytes with a key role in pathophysiology and differentiation of sebaceous glands.

Leukotriene Synthesis in Response to A23187 Is Inhibited by Methyl-β-Cyclodextrin in RBL-2H3 Cells

  • You, Hye Jin;Seo, Ji-Min;Moon, Ji-Young;Han, Sung-Sik;Ko, Young-Gyu;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • 제23권1호
    • /
    • pp.57-63
    • /
    • 2007
  • Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase $A_2$ ($cPLA_2$), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-${\beta}$-cyclodextrin (MβCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with M${\beta}$CD, and this effect was reversed when cholesterol was added. In an approach to identifying the $M{\beta}CD$-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.

t10,c12 Conjugated Linoleic Acid Upregulates Hepatic De Novo Lipogenesis and Triglyceride Synthesis via mTOR Pathway Activation

  • Go, Gwang-Woong;Oh, Sangnam;Park, Miri;Gang, Gyoungok;McLean, Danielle;Yang, Han-Sul;Song, Min-Ho;Kim, Younghoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1569-1576
    • /
    • 2013
  • In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However, the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid accumulation. It was found that treatment with t10,c12 CLA ($100{\mu}M$) for 72 h increased neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2-deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with consequent lipid accumulation in HepG2 cells.

Inhibitory Effects of Lactobacillus plantarum Q180 on Lipid Accumulation in HepG2 Cells

  • Chu, Jaeryang;Joung, Hyunchae;Kim, Byung-Kook;Choi, In-Suk;Park, Tae-Sik
    • 한국식품영양학회지
    • /
    • 제32권6호
    • /
    • pp.738-744
    • /
    • 2019
  • Recently, the prevalence of hyperlipidemia has been increasing, and consequently, the need to identify safe and effective treatments to control this chronic disease has also increased. The beneficial effects of probiotics have been revealed by several studies over the past few years, including their effects on hypertriglyceridemia. However, the mechanisms of action of probiotics are still unclear. The anti-obesity effects of Lactobacillus plantarum Q180 on lipid accumulation have already been demonstrated using an in vitro HepG2 cell model, and therefore, we investigated its efficacy and mechanism of action. Lipid accumulation was induced in HepG2 cells by palmitic acid treatment and then the cells were incubated with L. plantarum Q180 lysate or supernatant to investigate changes in lipid accumulation and expression of lipid metabolism-related genes. The results showed that the L. plantarum Q180-treated group exhibited significantly lower levels of lipid accumulation and mRNA expression of lipid synthesis- and adipogenesis-related genes than the palmitic acid-treated group did. These results indicate that L. plantarum Q180 may contribute to alleviating hypertriglyceridemia by inhibiting lipid synthesis.