• 제목/요약/키워드: Lipid Nanosphere

검색결과 3건 처리시간 0.019초

덱사메타손이 봉입된 지질나노입자의 제조: 지질의 종류와 함량 변화에 따른 지질나노입자의 특성 (Preparation of the Dexamethasone-incorporated Lipid Nanosphere: Characteristics of Lipid Nanosphere by Varying Species and Ratio of Lipid)

  • 정석현;이정은;성하수;신병철
    • 대한화학회지
    • /
    • 제50권6호
    • /
    • pp.464-470
    • /
    • 2006
  • 약물인 덱사메타손은 효과적인 염증치료제이다. 그러나 난용성 약물로써 수용액에서 주사제로 가용화가 어렵다. 따라서 º ¿±¸에서는 ¸Þ¸손을 수용액상에서 주사제로 가용화하기 §Ø¼­ 지질로 만들어진 나노입자에 ¸Þ¸손을 봉입하여 체내투여 시 약물을 서서히 방출할 수 ´ 약물전달체를 제조하고자 ¿´´. 지질나노입자는 인지질, 콜레스테롤 ±×¸?簾? 양이온성 지질을 사용하여 자발 유화 ¿매확산법에 의해 제조하였다. ³ª노입자는 다양한 지질 종류와 지질의 함량에 따라서 봉입효율, 기 그리고 표면전하와 °°º ¹°리적 특성을 평가하였다. 기는 80~120 nm ¿´¸¸, 봉입효율은 80% 이상의 높은 효율을 보였다. 질의 지방쇄의 길이가 ±æ¼· 봉입효율은 증가하였고, 콜레스테롤의 량과 봉입효율은 반비례하였다. 나노지질입자는 양이온성 지질 없이는 형성되지 않았으며 ¾온성 지질의 ·?閻?¡ 따라서 봉입효율은 °¡하였다. 덱사메타손이 봉입된 지질나노입자는 난용성 약물을 주사제로 가용화 수 ´ 새로운 약물전달체로써의 가능성을 기대하는 바이다.

팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성 (Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid)

  • 정석현;이정은;성하수;신병철
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권6호
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

Oxidized Carbon Nanosphere-Based Subunit Vaccine Delivery System Elicited Robust Th1 and Cytotoxic T Cell Responses

  • Sawutdeechaikul, Pritsana;Cia, Felipe;Bancroft, Gregory J.;Wanichwecharungruang, Supason;Sittplangkoo, Chutamath;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.489-499
    • /
    • 2019
  • Subunit vaccines are safer and more stable than live vaccines although they have the disadvantage of eliciting poor immune response. To develop a subunit vaccine, an effective delivery system targeting the key elements of the protective immune response is a prerequisite. In this study, oxidized carbon nanospheres (OCNs) were used as a subunit vaccine delivery system and tuberculosis (TB) was chosen as a model disease. TB is among the deadliest infectious diseases worldwide and an effective vaccine is urgently needed. The ability of OCNs to deliver recombinant Mycobacterium tuberculosis (Mtb) proteins, Ag85B and HspX, into bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) was investigated. For immunization, OCNs were mixed with the two TB antigens as well as the adjuvant monophosphoryl lipid A (MPL). The protective efficacy was analyzed in vaccinated mice by aerosol Mtb challenge with a virulent strain of Mtb and the bacterial burdens were measured. The results showed that OCNs are highly effective in delivering Mtb proteins into the cytosol of BMDMs and BMDCs. Upon immunization, this vaccine formula induced robust Th1 immune response characterized by cytokine profiles from restimulated splenocytes and specific antibody titer. More importantly, enhanced cytotoxic $CD8^+$ T cell activation was observed. However, it did not reduce the bacteria burden in the lung and spleen from the aerosol Mtb challenge. Taken together, OCNs are highly effective in delivering subunit protein vaccine and induce robust Th1 and $CD8^+$ T cell response. This vaccine delivery system is suitable for application in settings where cell-mediated immune response is needed.