• Title/Summary/Keyword: Lipid Metabolism Genes

Search Result 211, Processing Time 0.041 seconds

Differential Regulation of Obesity by Swim Training in Female Sham-operated and Ovariectomized Mice

  • Jeong, Sun-Hyo;Yoon, Mi-Chung
    • Biomedical Science Letters
    • /
    • v.17 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • The peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) is a nuclear transcription factor that plays a central role in lipid and lipoprotein metabolism. To investigate whether swim training improves obesity and lipid metabolism through $PPAR{\alpha}$ activation in female sham-operated (Sham) and ovariectomized (OVX) mice, we measured body weight, visceral adipose tissue mass, serum free fatty acid at 6 weeks as well as the expression of hepatic $PPAR{\alpha}$ target genes involved in fatty acid oxidation. Swim-trained mice had decreased body weight, visceral adipose tissue mass and serum free fatty acid levels compared to high fat diet fed control mice in both female Sham and OVX mice. These reductions were more prominent in OVX than in Sham mice. Swim training significantly increased hepatic mRNA levels of $PPAR{\alpha}$ target genes responsible for mitochondrial fatty acid ${\beta}$-oxidation, such as carnitine palmitoyltransgerase-1 (CPT-1), very long chain acyl-CoA dehydrogenase (VLCAD), and medium chain acyl-CoA dehydrogenase (MCAD) in OVX mice. However, swim trained female Sham mice did not increase hepatic mRNA levels of $PPAR{\alpha}$ target genes responsible for mitochondrial fatty acid ${\beta}$-oxidation compared to Sham control mice. These results indicate that swim training differentially regulates body weight and adipose tissue mass between OVX and Sham mice, at least in part due to differences in liver $PPAR{\alpha}$ activation.

Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice

  • Kim, Juyoung;Kim, Juhae;Kwon, Young Hye
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. MATERIALS/METHODS: Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. RESULTS: Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including $LXR{\alpha}$, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. CONCLUSIONS: Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.7
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Inhibitory Effects of Lactobacillus plantarum Q180 on Lipid Accumulation in HepG2 Cells

  • Chu, Jaeryang;Joung, Hyunchae;Kim, Byung-Kook;Choi, In-Suk;Park, Tae-Sik
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.6
    • /
    • pp.738-744
    • /
    • 2019
  • Recently, the prevalence of hyperlipidemia has been increasing, and consequently, the need to identify safe and effective treatments to control this chronic disease has also increased. The beneficial effects of probiotics have been revealed by several studies over the past few years, including their effects on hypertriglyceridemia. However, the mechanisms of action of probiotics are still unclear. The anti-obesity effects of Lactobacillus plantarum Q180 on lipid accumulation have already been demonstrated using an in vitro HepG2 cell model, and therefore, we investigated its efficacy and mechanism of action. Lipid accumulation was induced in HepG2 cells by palmitic acid treatment and then the cells were incubated with L. plantarum Q180 lysate or supernatant to investigate changes in lipid accumulation and expression of lipid metabolism-related genes. The results showed that the L. plantarum Q180-treated group exhibited significantly lower levels of lipid accumulation and mRNA expression of lipid synthesis- and adipogenesis-related genes than the palmitic acid-treated group did. These results indicate that L. plantarum Q180 may contribute to alleviating hypertriglyceridemia by inhibiting lipid synthesis.

Effects of prolonged photoperiod on growth performance, serum lipids and meat quality of Jinjiang cattle in winter

  • Yu, Yan;Qiu, Jingyun;Cao, Jincheng;Guo, Yingying;Bai, Hui;Wei, Shengjuan;Yan, Peishi
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1569-1578
    • /
    • 2021
  • Objective: This study was conducted to investigate the potential effects of prolonged photoperiod on the serum lipids, carcass traits, and meat quality of Jinjiang cattle during winter. Methods: Thirty-four Jinjiang bulls aged between 14 and 16 months were randomly assigned to two groups that were alternatively subjected to either natural daylight +4 h supplemental light (long photoperiod, LP) or natural daylight (natural photoperiod, NP) for 96 days. The potential effects on the levels of serum lipids, carcass traits, meat quality, and genes regulating lipid metabolism in the intramuscular fat (IMF) of the cattle were evaluated. Results: Jinjiang cattle kept under LP showed significant increase in both dry matter intake and backfat thickness. the serum glucose and the plasma leptin levels were significantly reduced, while that of melatonin and insulin were observed to be increased. The crude fat contents of biceps femoris muscle and longissimus dorsi muscle were higher in LP than in NP group. In longissimus dorsi muscle, the proportions of C17:0 and C18:0 were significantly higher but that of the C16:1 was found to be significantly lower in LP group. The relative mRNA expressions in IMF of longissimus dorsi muscle, the lipid synthesis genes (proliferator-activated receptor gamma, fatty acid-binding protein) and the fatty acid synthesis genes (acetyl-coa carboxylase, fatty acid synthetase, 1-acylglycerol-3-phosphate acyltransferase) were significantly up-regulated in LP group (p<0.05); whereas the hormone-sensitive lipase and stearoyl-CoA desaturase 1 were significantly down-regulated in LP than in NP group. Conclusion: Prolonged photoperiod significantly altered the growth performance, hormonal levels, gene expression and fat deposition in Jinjiang cattle. It suggested that the LP improved the fat deposition by regulating the levels of different hormones and genes related to lipid metabolism, thereby improving the fattening of Jinjiang cattle during winter.

Comprehensive Lipid Profiling Recapitulates Enhanced Lipolysis and Fatty Acid Metabolism in Intimal Foamy Macrophages From Murine Atherosclerotic Aorta

  • Jae Won Seo;Kyu Seong Park;Gwang Bin Lee;Sang-eun Park;Jae-Hoon Choi;Myeong Hee Moon
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.28.1-28.20
    • /
    • 2023
  • Lipid accumulation in macrophages is a prominent phenomenon observed in atherosclerosis. Previously, intimal foamy macrophages (FM) showed decreased inflammatory gene expression compared to intimal non-foamy macrophages (NFM). Since reprogramming of lipid metabolism in macrophages affects immunological functions, lipid profiling of intimal macrophages appears to be important for understanding the phenotypic changes of macrophages in atherosclerotic lesions. While lipidomic analysis has been performed in atherosclerotic aortic tissues and cultured macrophages, direct lipid profiling has not been performed in primary aortic macrophages from atherosclerotic aortas. We utilized nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry to provide comprehensive lipid profiles of intimal non-foamy and foamy macrophages and adventitial macrophages from Ldlr-/- mouse aortas. We also analyzed the gene expression of each macrophage type related to lipid metabolism. FM showed increased levels of fatty acids, cholesterol esters, phosphatidylcholine, lysophosphatidylcholine, phosphatidylinositol, and sphingomyelin. However, phosphatidylethanolamine, phosphatidic acid, and ceramide levels were decreased in FM compared to those in NFM. Interestingly, FM showed decreased triacylglycerol (TG) levels. Expressions of lipolysis-related genes including Pnpla2 and Lpl were markedly increased but expressions of Lpin2 and Dgat1 related to TG synthesis were decreased in FM. Analysis of transcriptome and lipidome data revealed differences in the regulation of each lipid metabolic pathway in aortic macrophages. These comprehensive lipidomic data could clarify the phenotypes of macrophages in the atherosclerotic aorta.

Comparative analysis of liver transcriptome reveals adaptive responses to hypoxia environmental condition in Tibetan chicken

  • Yongqing Cao;Tao Zeng;Wei Han;Xueying Ma;Tiantian Gu;Li Chen;Yong Tian;Wenwu Xu;Jianmei Yin;Guohui Li;Lizhi Lu;Shuangbao Gun
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.28-38
    • /
    • 2024
  • Objective: Tibetan chickens, which have unique adaptations to extreme high-altitude environments, exhibit phenotypic and physiological characteristics that are distinct from those of lowland chickens. However, the mechanisms underlying hypoxic adaptation in the liver of chickens remain unknown. Methods: RNA-sequencing (RNA-Seq) technology was used to assess the differentially expressed genes (DEGs) involved in hypoxia adaptation in highland chickens (native Tibetan chicken [HT]) and lowland chickens (Langshan chicken [LS], Beijing You chicken [BJ], Qingyuan Partridge chicken [QY], and Chahua chicken [CH]). Results: A total of 352 co-DEGs were specifically screened between HT and four native lowland chicken breeds. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses indicated that these co-DEGs were widely involved in lipid metabolism processes, such as the peroxisome proliferator-activated receptors (PPAR) signaling pathway, fatty acid degradation, fatty acid metabolism and fatty acid biosynthesis. To further determine the relationship from the 352 co-DEGs, protein-protein interaction network was carried out and identified eight genes (ACSL1, CPT1A, ACOX1, PPARC1A, SCD, ACSBG2, ACACA, and FASN) as the potential regulating genes that are responsible for the altitude difference between the HT and other four lowland chicken breeds. Conclusion: This study provides novel insights into the molecular mechanisms regulating hypoxia adaptation via lipid metabolism in Tibetan chickens and other highland animals.

Anti-Obesity and Lipid Metabolism Effects of Ulmus davidiana var. japonica in Mice Fed a High-Fat Diet

  • Lee, Sung-Gyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.1011-1021
    • /
    • 2021
  • The root bark of Ulmus davidiana var. japonica (Japanese elm) is used in Korea and other East Asian countries as a traditional herbal remedy to treat a variety of inflammatory diseases and ailments such as edema, gastric cancer and mastitis. For this study, we investigated the lipid metabolism and anti-obesity efficacy of ethyl alcohol extract of Ulmus davidiana var. japonica root bark (UDE). First, HPLC was performed to quantify the level of (+)-catechin, the active ingredient of UDE. In the following experiments, cultured 3T3-L1 pre-adipocytes and high-fat diet (HFD)-fed murine model were studied for anti-obesity efficacy by testing the lipid metabolism effects of UDE and (+)-catechin. In the test using 3T3-L1 pre-adipocytes, treatment with UDE inhibited adipocyte differentiation and significantly reduced the production of adipogenic genes and transcription factors PPARγ, C/EBPα and SREBP-1c. HFD-fed, obese mice were administered with UDE (200 mg/kg per day) and (+)-catechin (30 mg/kg per day) by oral gavage for 4 weeks. Weight gain, epididymal and abdominal adipose tissue mass were significantly reduced, and a change in adipocyte size was observed in the UDE and (+)-catechin treatment groups compared to the untreated control group (***p < 0.001). Significantly lower total cholesterol and triglyceride levels were detected in UDE-treated HFD mice compared to the control, revealing the efficacy of UDE. In addition, it was found that lipid accumulation in hepatocytes was also significantly reduced after administration of UDE. These results suggest that UDE has significant anti-obesity and lipid metabolism effects through inhibition of adipocyte differentiation and adipogenesis.

Doxorubicin Attenuates Free Fatty Acid-Induced Lipid Accumulation via Stimulation of p53 in HepG2 Cells

  • Chawon Yun;Sou Hyun Kim;Doyoung Kwon;Mi Ran Byun;Ki Wung Chung;Jaewon Lee;Young-Suk Jung
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.94-103
    • /
    • 2024
  • Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 ㎍/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.