• 제목/요약/키워드: Lipid Metabolism Genes

검색결과 211건 처리시간 0.034초

Desalinated underground seawater of Jeju Island (Korea) improves lipid metabolism in mice fed diets containing high fat and increases antioxidant potential in t-BHP treated HepG2 cells

  • Noh, Jung-Ran;Gang, Gil-Tae;Kim, Yong-Hoon;Yang, Keum-Jin;Lee, Chul-Ho;Na, O-Su;Kim, Gi-Ju;Oh, Won-Keun;Lee, Young-Don
    • Nutrition Research and Practice
    • /
    • 제4권1호
    • /
    • pp.3-10
    • /
    • 2010
  • This study was performed to investigate the effect of desalinated underground seawater (named as 'magma seawater', MSW) of Jeju Island in Korea on lipid metabolism and antioxidant activity. MSW was collected from underground of Han-Dong in Jeju Island, and freely given to high fat diet (HFD)-fed C57BL/6 mice for 10 weeks. Although there were no significant differences in the body weight changes and plasma lipid levels, hepatic triglyceride levels were significantly lower in the MSW group than in the normal tap water (TW)-drunken control group. Furthermore, the activity of fatty acid synthase (FAS) was significantly decreased and carnitine palmitoyltransferase (CPT) activity was increased in MSW group compared to TW group. Similarly, real-time PCR analysis revealed that mRNA expressions of lipogenic genes were lowered in MSW groups compared to the control group. In a morphometric observation on the liver tissue, accumulation of fats was remarkably reduced in MSW group. Meanwhile, in vitro assay, tree radical scavenging activity measured by using diphenylpicrylhydrazyl (DPPH) was increased in MSW group. The 2'-7'-dichlorofluorescein diacetate (DCF-DA) staining followed with fluorescent microscopy showed a low intensity of fluorescence in MSW-treated HepG2 cells, compared to TW-treated HepG2 cells, which indicated that the production of reactive oxygen species by tert-butyl hydroperoxide (t-BHP) in HepG2 cells was decreased by MSW treatment. The antioxidant effect of MSW on t-BHP-induced oxidative stress in HepG2 cells was supported by the increased activities of intracellular antioxidant enzymes such as catalase and glutathione reductase. From these results, we speculate that MSW has an inhibitory effect on lipogenesis in liver and might play a protective role against cell damage by t-BHP-induced oxidative stress.

시스템 분석을 통한 지질대사에서 울금의 약리작용 (Pharmacological Systemic Analysis of Curcumae Radix in Lipid Metabolism)

  • 조한별;김지영;김민성;안원근;이장천
    • 대한한의학방제학회지
    • /
    • 제26권3호
    • /
    • pp.237-250
    • /
    • 2018
  • Objectives : This study is a pharmacological network approach, aimed to identify the potential active compounds contained in Curcumae Radix, and their associated targets, to predict the various bio-reactions involved, and finally to establish the cornerstone for the deep-depth study of the representative mechanisms. Methods : The active compounds of Curcumae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : The target information from 32 potential active compounds of Curcumae Radix was collected through TCMSP analysis. The active compounds interact with 133 target genes engaging in total of 885 biological pathways. The most relevant pathway was the lipid-related metabolism, in which 3 representative active compounds were naringenin, oleic acid, and ${\beta}-sitosterol$. The mostly targeted proteins in the lipid pathway were ApoB, AKT1 and PPAR. Conclusions : The pharmacological network analysis is convenient approach to predict the overall metabolic mechanisms in medicinal herb research, which can reduce the processes of various experimental trial and error and provide key clues that can be used to validate and experimentally verify the core compounds.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권3호
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Dietary supplementation with Korean pine nut oil decreases body fat accumulation and dysregulation of the appetite-suppressing pathway in the hypothalamus of high-fat diet-induced obese mice

  • Shin, Sunhye;Park, Soyoung;Lim, Yeseo;Han, Sung Nim
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.285-297
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Korean pine nut oil (PNO) has been reported to suppress appetite by increasing satiety hormone release. However, previous studies have rendered inconsistent results and there is lack of information on whether dietary Korean PNO affects the expression of satiety hormone receptors and hypothalamic neuropeptides. Therefore, our study sought to evaluate the chronic effects of Korean PNO on the long-term regulation of energy balance. MATERIALS/METHODS: Five-week-old male C57BL/6 mice were fed with control diets containing 10% kcal fat from Korean PNO or soybean oil (SBO) (PC or SC) or high-fat diets (HFDs) containing 35% kcal fat from lard and 10% kcal fat from Korean PNO or SBO (PHFD or SHFD) for 12 weeks. The expression of gastrointestinal satiety hormone receptors, hypothalamic neuropeptides, and genes related to intestinal lipid absorption and adipose lipid metabolism was then measured. RESULTS: There was no difference in the daily food intake between PNO- and SBO-fed mice; however, the PC and PHFD groups accumulated 30% and 18% less fat compared to SC and SHFD, respectively. Korean PNO-fed mice exhibited higher messenger RNA (mRNA) expression of Ghsr (ghrelin receptor) and Agrp (agouti-related peptide) (P < 0.05), which are expressed when energy consumption is low to induce appetite as well as the appetitesuppressing neuropeptides Pomc and Cartpt (P = 0.079 and 0.056, respectively). Korean PNO downregulated jejunal Cd36 and epididymal Lpl mRNA expressions, which could suppress intestinal fatty acid absorption and fat storage in white adipose tissue. Consistent with these findings, Korean PNO-fed mice had higher levels of fecal non-esterified fatty acid excretion. Korean PNO also tended to downregulate jejunal Apoa4 and upregulate epididymal Adrb3 mRNA levels, suggesting that PNO may decrease chylomicron synthesis and induce lipolysis. CONCLUSIONS: In summary, Korean PNO attenuated body fat accumulation, and appeared to prevent HFD-induced dysregulation of the hypothalamic appetite-suppressing pathway.

Cryptotanshinone promotes brown fat activity by AMPK activation to inhibit obesity

  • Jie Ni;Aili Ye;Liya Gong;Xiafei Zhao;Sisi Fu;Jieya Guo
    • Nutrition Research and Practice
    • /
    • 제18권4호
    • /
    • pp.479-497
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans. MATERIALS/METHODS: The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression. RESULTS: In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT. CONCLUSION: CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.

Identification of Candidate Genes Associated with Beef Marbling Using QTL and Pathway Analysis in Hanwoo (Korean Cattle)

  • Park, Hye-Sun;Seo, Seong-Won;Cho, Yong-Min;Oh, Sung-Jong;Seong, Hwan-Hoo;Lee, Seung-Hwan;Lim, Da-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권5호
    • /
    • pp.613-620
    • /
    • 2012
  • Marbling from intramuscular fat is an important trait of meat quality and has an economic benefit for the beef industry. Quantitative trait loci (QTL) fine mapping was performed to identify the marbling trait in 266 Hanwoo steers using a 10K single nucleotide polymorphism panel with the combined linkage and linkage disequilibrium method. As a result, we found nine putative QTL regions for marbling: three on BTA6, two on BTA17, two on BTA22, and two on BTA29. We detected candidate genes for marbling within 1 cM of either side of the putative QTL regions. Additionally, to understand the functions of these candidate genes at the molecular level, we conducted a functional categorization using gene ontology and pathway analyses for those genes involved in lipid metabolism or fat deposition. In these putative QTL regions, we found 95 candidate genes for marbling. Using these candidate genes, we found five genes that had a direct interaction with the candidate genes. We also found SCARB1 as a putative candidate gene for marbling that involves fat deposition related to cholesterol transport.

Hepatoprotective Effects of Gardenia jasminoides Ellis Extract in Nonalcoholic Fatty Liver Disease Induced by a High Fat Diet in C57BL/6 Mice

  • Nam, Mi-Kyung;Choi, Hye-Ran;Cho, Jin-Sook;Cho, Soo-Min;Lee, Young-Ik
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.65-70
    • /
    • 2014
  • This study was carried out to investigate the potential effects of Gardenia jasminoides (GJ) extracts, on hepatic steatosis and lipid metabolism in mice fed with high-fat diet (HFD). GJ extracts (100 mg/kg, ${\times}10$ weeks) fed mice showed reduced body weight, adipose tissue weight, reduced aminotransferase level in plasma and hepatic lipid (triglyceride, total cholesterol) content. These effects were accompanied by decreased expression of lipogenic genes, sterol regulatory element binding protein-1c (SREBP-1c), liver X receptor (LXR), fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), lipoprotein lipase (LPL) and decreased lipogenic enzyme FAS and HMG-CoAR enzyme activities while elevating carnitine palmitoyltrasferase-1 (CPT) activity. Based on these results, we speculated that the inhibitory effect on hepatic steatosis of GJ extract containing geniposide is the result of suppression of lipid synthesis in mice fed with HFD, suggesting that GJ extract may be beneficial in preventing hepatic steatosis.

CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum

  • Qin Shu;Yufang Pan;Hanhua Hu
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.242-250
    • /
    • 2023
  • Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.

중만분소환 추출물이 Palmitate로 유발된 비알코올성 지방간 HepG2 cell 모델에 미치는 영향 (Effect of Jungmanbunso-hwan Extract on HepG2 Cell Model of Nonalcoholic Fatty Liver Disease Caused by Palmitate)

  • 이지원;최창원;전상윤;한창우;하예진
    • 대한한방내과학회지
    • /
    • 제37권3호
    • /
    • pp.442-452
    • /
    • 2016
  • Objectives: This study was performed to investigate the anti-lipogenic effect and the mechanism of Jungmanbunso-hwan extract (JMBSH) on a cellular model of non-alcoholic fatty liver disease (NAFLD) caused by palmitate in HepG2 cells.Methods: The JMBSH was prepared, andHepG2 cells were treated with various concentrations of JMBSH in order to perform an MTT assay. The HepG2 cells were cultivated in palmitate-containing media with or without extract of JMBSH. The intracellular lipid content in the HepG2 cells was examined. The effects of JMBSH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and AMP-activated protein kinase (AMPK) activation in HepG2 cells were measured.Results: JMBSH did not reduce HepG2 cell viability under 1,000 μg/mL. JMBSH considerably decreased intracellular lipid accumulation caused by palmitate in HepG2 cells. JMBSH repressed expression of SREBP-1c, which mediates the induction of lipogenic genes (ACC, FAS, and SCD-1). JMBSH also activated AMPK, which plays animportant role in the regulation of hepatic lipid metabolism.Conclusions: This study suggested that JMBSH relieves hepatic steatosis by repressing SREBP-1c, which mediates the induction of lipogenic genes. The anti-lipogenic effect of JMBSH may also be related to the activation of AMPK. Therefore, JMBSH could potentially be applied to NAFLD treatment after further clinical studies.

The antioxidant activity of steamed ginger and its protective effects on obesity induced by high-fat diet in C57BL/6J mice

  • Kim, Hee-Jeong;Kim, Bohkyung;Mun, Eun-Gyung;Jeong, Soon-Yeon;Cha, Youn-Soo
    • Nutrition Research and Practice
    • /
    • 제12권6호
    • /
    • pp.503-511
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Ginger, a root vegetable, is known to have antioxidant and antiobesity effects. Preparation, such as by steaming, can affect the chemical composition of prepared root vegetables or herbs and can change their functional activities. In the present study, we investigated the protective effects of steamed ginger against oxidative stress and steatosis in C57BL/6J mice fed a high-fat diet. MATERIAL/METHODS: The levels of polyphenols and flavonoids in two different extracts of steamed ginger, i.e., water extract (SGW) and ethanolic extract (SGE); as well, their antioxidant activities were examined. Forty male C57BL/6J mice were fed a normal diet (ND, n = 10), high-fat diet (HFD, 60% fat, w/w, n = 10), HFD supplemented with 200 mg/kg of SGE or garcinia (GAR) by weight (SGED or GARD, respectively, n = 10) for 12 weeks. Serum chemistry was examined, and the expressions of genes involved in lipid metabolism were determined in the liver. Histological analysis was performed to identify lipid accumulations in epididymal fat pads and liver. RESULTS: The SGE had higher contents of polyphenols and flavonoids and higher DPPH and $ABTS^+$ free radical scavenging activities compared to those of SGW. Treatment with SGE or GAR significantly decreased the HFD-induced weight gain. Both SGE and GAR significantly reduced the high serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein levels induced by HFD. Compared to ND, HFD significantly increased hepatic TC and TG levels. SGE or GAR supplementation significantly decreased the increase of hepatic lipids by HFD. Interestingly, SGE had a more significant effect in reducing hepatic TC and TG levels than GAR. Furthermore, hepatic genes involved in lipogenesis and lipolysis were altered in both the SGED and GARD groups. CONCLUSIONS: The present study indicates that steamed ginger supplementation can decrease plasma TC and TG and can inhibit liver steatosis by regulating the expressions of hepatic genes.