• Title/Summary/Keyword: Lipase AS

Search Result 676, Processing Time 0.028 seconds

Synthesis of Fructose Ester Compound by Lipase in Organic Solvent (유기용매계에서 Lipase에 의한 Fructose Ester의 합성)

  • 신영민;이상옥;이재동;이태호
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.181-186
    • /
    • 1997
  • Sugar ester compounds were synthesized in organic solvent using lipase. Anhydrous pyridinc was selected as ;I solvent because of reasonable solubility of sugar. The synthesis of sugar ester compound was catalyzed by Pseudomonas sp. lipase in the reaction system containing anhydrous pyridine as .i solvent and vinyl butylate as an acyl donor. The analysis of the reaction product by TLC and GC showed thilt monobutyryl and dibutyryl fructose esters were synthesized by transesterification reaction between fructose and vinyl butyrate. Optimal conditions for the transesterification reaction were as follows: the ratio of fructoselvinyl butylate, I : lO(M : M): reaction temperature, 40^{\circ}C.$, velocity of shaking, 150 rprn: concentration of enzyme, 10 mglml. The longer the reaction period, the higher the conversion rate, and the conversion rate reached up to 90% after about 10 days of reaction. Monobutyryl fructose was mainly synthesized in the early stage of reaction, but the amount of dibutyryl fructose increased gradually as the rcdction progressed. When a small amount of water was added to the reaction mixture (micro-water system), the reaction rate decreased, while that of rnonobutyr~l fructosc increased. Only monobutyryl fructose was obtained when 1% water was added to the reaction mixture.

  • PDF

Production of Enantioselective Lipase from Acinetobacter sp. SY-01 (Acinetobacter sp. SY-01로부터 Enantioselective Lipase의 생산)

  • 박대원;박호일;신평균
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.145-150
    • /
    • 2003
  • Lipase from Acinetobacter sp. SY-01 plays an important role enzyme that products chiral drug. We investigated optimum condition for mass production of Acinetobacter sp. SY-01 lipase. Addition of among the different oils to medium. olive oil was optimal for enzyme production. When 0.2% olive oil was added as a carbon source, the production of lipase was increased to a maximum. The optimum pH and temperature were pH 7 and $30^{\circ}C$. In the presence of $Fe^{2+}$ and $Ca^{2+}$, the lipase activity was dramatically enhanced by 280% and 160%, respectively. SY-01 lipase was stable in the most of the DMSO among organic solvents. The addition of triton-X 100 increased the SY-01 lipase by 100-fold. The optimum composition of medium for production of the enzyme was 0.8% yeast extract, 0.2% olive oil, 0.4% triton X-100+40% DMSO. 0.1% $NH_4Cl$, 0.4% $K_2HPO_4$ 3.9% $NaH_2PO_4$, 0.03% $CaCl_22H_2O$, 0.01% $FeSO_4$$7H_2O$(pH 7.0).

Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106 (Pseudomonas sp. BCNU 106이 생산하는 유기용매 내성 리파아제의 특성)

  • Choi, Hye Jung;Hwang, Min Jung;Kim, Dong Wan;Joo, Woo Hong
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.603-607
    • /
    • 2016
  • A crude extracellular lipase from solvent-tolerant bacterium Pseudomonas sp. BCNU 106 was highly stable in the broad pH range of 4-10 and at temperature of 37℃. Crude lipase of BCNU 106 exhibited enhanced stability in 25% organic solvents such as xylene (121.85%), hexane (120.35%), octane (120.41 %), toluene (118.14%), chloroform (103.66%) and dodecane (102.94%) and showed excellent stability comparable with the commercial immobilized enzyme. In addition, the stability of BCNU 106 lipase retained above 110% of its enzyme activity in the presence of Cu2+, Hg2+, Zn2+ and Mn2+, whereas Fe2+ strongly inhibited its stability. The detergents including tween 80, triton X-100 and SDS were positive signals for lipase stability. Because of its stability in multiple organic solvents, cations and surfactants, the Pseudomonas sp. BCNU 106 lipase could be considered as a potential biocatalyst in the industrial chemical processes without using immobilization.

Inhibitory Effects of Marine Algae Extract on Adipocyte Differentiation and Pancreatic Lipase Activity

  • Kim, Eun-Sil;Lee, Kyoung-Jin;Oh, Kyoung-Hee;Ahn, Jong-Hoon;Kim, Seon-Beom;Liu, Qing;Hwang, Bang-Yeon;Lee, Mi-Kyeong
    • Natural Product Sciences
    • /
    • v.18 no.3
    • /
    • pp.153-157
    • /
    • 2012
  • Obesity, which is characterized by excessive fat accumulation in adipose tissues, occurs by fat absorption by lipase and sequential fat accumulation in adipocyte through adipocyte differentiation. Thus, inhibition of pancreatic lipase activity and adipocyte differentiation would be crucial for the prevention and progression of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of several algae extracts employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. The effects on pancreatic lipase activity in vitro were also evaluated. Total methanolic extracts of Cladophora wrightiana and Costaria costata showed significant inhibitory activity on adipocyte differentiation as assessed by measuring fat accumulation using Oil Red O staining. Related to pancreatic lipase, C. wrightiana and Padina arborescens showed significant inhibition. Further fractionation of C. wrightiana, which showed the most potent activity, suggested that $CHCl_3$ and n-BuOH fraction are responsible for adipocyte differentiation inhibition, whereas n-BuOH and $H_2O$ fraction for pancreatic lipase inhibition. Our study also demonstrated that n-BuOH fraction was effective both in early and middle stage of differentiation whereas $CHCl_3$ fraction was effective only in early stage of differentiation. Taken together, algae might be new candidates in the development of obesity treatment.

Comparative Evaluation of Korean Medicine well-matched with Chicken through an inhibition of Pancreatic Lipase (닭고기와 잘 어울리는 췌장라이페이즈 억제능을 가진 한약재의 비교평가)

  • Shin, Mi-Rae;An, Hyo-Jin;Lee, Young Cheol;Seo, Bu-Il;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.9-15
    • /
    • 2017
  • Objectives : In this study, the inhibitory activities of Korean Medicine against pancreatic lipase in vitro and biochemical analyses in vivo were measured to determine its possibility as a well-matched sauce material with chicken. Methods : The inhibitory activity on pancreatic lipase enzyme of 11 samples were evaluated in vitro and then 5 samples were selected. The activity of pancreatic lipase was investigated using orlistat as a positive control. Animals were divided into eight groups (n=7). The experimental groups except for normal group were fed 60% high-fat diet for 7 days. 5 samples were orally administered at a dose of 200 mg/kg body weight and orlistat were orally administrated at a dose of 60 mg/kg body weight for 7 days. Biochemical anaylses of 5 samples were executed based on lipid parameters analysis. Results : Korean Medicines with an $IC_{50}$ of below 1 mg/kg were Scutellariae Radix, Gardeniae Fructus, Theae Folium Coptidis Radix, and Mori Cortex Radicis. Body weight change of Mori Cortex Radicis reduced significantly, however fecal triglyceride couldn't regulate effectively. The most excellent inhibitory effect of pancreatic lipase showed in Scutellariae Radix treatment and also regulated significantly serum triglyceride and total cholesterol. Moreover, the supplementation of Coptidis Radix excreted meaningfully triglyceride to fece. Conclusions : In conclusion, Coptidis Radix may exert anti-obesity effect by directly inhibiting pancreatic lipase, which would prevent the absorption of lipid from the small intestine. Besides, Mori Cortex Radicis may led to the decrease of the body weight via the different pathway.

The Effect of Ginseng Saponins on the Activity of Lipoprotein Lipase in Vitro (Lipoprotein Lipase의 활성에 미치는 인삼 Saponin의 영향)

  • Paik, Tai-Hong;Kim, Hyo-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.77-81
    • /
    • 1985
  • In order to investigate the effect of ginseng saponins on the activity of lipoprotein lipase, it was attempted to conform the enzymatic hydrolysis of chylomicron with post-heparin induced plasma lipoprotein lipase of normal rabbit in vitro. And the activity of lipoprotein llipase was determined by the quantitative determination of liberated free fatty acids on the hydrolysis of chylomicron. As the result, it was observed that the ginseng saponins accelerated the hydrolysis of chylomicron by post-heparin plasma in vitro. And the optimum concentration of ginseng saponins for the activity of the lipoprotein lipase in the 2% bovine serum albumin was $10^{-4}%$. But ginseng saponins on the hydrolysis of chylomicron was influenced by the presence and the absence of albumin. And the optimum concentration of albumin and Na-cholate on the activity of lipoprotein lipase was each of the $10^{-6}%$ albumin and 5mM Na-cholate. From these results, it seems that ginseng saponins might stimulate the intravascular hydrolysis of chylomicron.

Biochemical Properties and Substrate Specificity of Lipase from Staphylococcus aureus B56

  • Jung, Woo-Hyuk;Kim, Hyung-Kwoun;Lee, Chan-Yong;Oh, Tae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2002
  • A lipase of Staphylococcus aureus B56 was purified from a culture supernatant and its molecular weight was estimated to be 45 kDa by SDS-PAGE. The optimum temperature and pH for the hydrolysis of olive oil was $42^{\circ}C$ and pH 8-8.5, respectively. The enzyme was stable up to $55^{\circ}C$ in the presence of $Ca^++$ at pHs 5-11. The lipase gene was cloned using the PCR amplification method. The sequence analysis showed an open reading frame of 2,076 bp, which encoded a preproenzyme of 691 amino acids. The preproenzyme was composed of a signal sequence (37 aa), propeptide (255 aa), and mature enzyme (399 aa). Based on a sequence comparison, lipase B56 constituted of a separate subgroup among the staphylococcal lipase groups, such as S. aureus PS54 and S. haemolyticus L62 lipases, and was distinct from other lipases in their optimum pH and substrate specificity.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Rhei Rhizoma and Chunghyuldan Inhibit Pancreatic Lipase

  • Yang, Hyung-Kil;Kim, Young-Suk;Bae, Hyung-Sup;Cho, Ki-Ho;Shin, Ji-Eun;Kim, Nam-Jae;Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2003
  • Pancreatic lipase-inhibitory activity of the rhizome of Rhei Rhizoma and its antihyperlipidemic activity were measured. Rhei Rhizoma inhibited pancreatic lipase with $IC_{50}$ value of 6.5 mg/ml (triolein as a substrate). Rhei Rhizoma significantly inhibited serum TG level in corn oil feeding-induced mice, and serum TG and cholesterol in Triton WR-1339-induced hyperlipidemic mice. However, Rhei Rhizoma did not show the hypolipidemic activity in high cholesterol diet-induced hyperlipidemic mice. When in vitro pancreatic lipase-inhibitory and in vivo antihyperlipidemic activities of Whangryunhaedoktang (WT) and Chunghyuldan (CD), which is consisted of ingredients of WT and Rhei Rhizoma, were measured, CD exhibited more potent inhibitory activities than WT. Therefore these results suggest that antihyperlipidemic activity of Rhei Rhizoma and CD may be more or less originated from the inhibition of pancreatic lipase.

In vitro antioxidant property and α-glucosidase and pancreatic lipase inhibiting activities of Jeju camellia mistletoe (Korthalsella japonica (Thunb.) Engl.) extracts (제주 동백나무 겨우살이(Korthalsella japonica (Thunb.) Engl.)의 항산화 및 α-glucosidase와 pancreatic lipase 저해 활성)

  • Park, Eun Mi;Kim, Min Young
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.241-244
    • /
    • 2017
  • The antioxidant activity of various solvent extracts from Jeju camellia mistletoe (Korthalsella japonica (Thunb.) Engl.) was investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl radical scavenging, ferrous ion chelating and reducing power assays. Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water extract. The inhibitory effect of the Jeju camellia mistletoe extracts on pancreatic lipase and $\acute{a}$-glucosidase was also evaluated and the results showed that methanol and ethanol extracts markedly reduced both enzyme activities. Therefore, the methanol and ethanol extracts of Jeju camellia mistletoe is definitely worthy of further investigation for these beneficial effects on nutraceutical medicine.