• Title/Summary/Keyword: Lip-Reading Technology

Search Result 12, Processing Time 0.017 seconds

Recognition of Korean Vowels using Bayesian Classification with Mouth Shape (베이지안 분류 기반의 입 모양을 이용한 한글 모음 인식 시스템)

  • Kim, Seong-Woo;Cha, Kyung-Ae;Park, Se-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.852-859
    • /
    • 2019
  • With the development of IT technology and smart devices, various applications utilizing image information are being developed. In order to provide an intuitive interface for pronunciation recognition, there is a growing need for research on pronunciation recognition using mouth feature values. In this paper, we propose a system to distinguish Korean vowel pronunciations by detecting feature points of lips region in images and applying Bayesian based learning model. The proposed system implements the recognition system based on Bayes' theorem, so that it is possible to improve the accuracy of speech recognition by accumulating input data regardless of whether it is speaker independent or dependent on small amount of learning data. Experimental results show that it is possible to effectively distinguish Korean vowels as a result of applying probability based Bayesian classification using only visual information such as mouth shape features.

Multimodal audiovisual speech recognition architecture using a three-feature multi-fusion method for noise-robust systems

  • Sanghun Jeon;Jieun Lee;Dohyeon Yeo;Yong-Ju Lee;SeungJun Kim
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.22-34
    • /
    • 2024
  • Exposure to varied noisy environments impairs the recognition performance of artificial intelligence-based speech recognition technologies. Degraded-performance services can be utilized as limited systems that assure good performance in certain environments, but impair the general quality of speech recognition services. This study introduces an audiovisual speech recognition (AVSR) model robust to various noise settings, mimicking human dialogue recognition elements. The model converts word embeddings and log-Mel spectrograms into feature vectors for audio recognition. A dense spatial-temporal convolutional neural network model extracts features from log-Mel spectrograms, transformed for visual-based recognition. This approach exhibits improved aural and visual recognition capabilities. We assess the signal-to-noise ratio in nine synthesized noise environments, with the proposed model exhibiting lower average error rates. The error rate for the AVSR model using a three-feature multi-fusion method is 1.711%, compared to the general 3.939% rate. This model is applicable in noise-affected environments owing to its enhanced stability and recognition rate.