Lip-reading is the task of inferring the speaker's utterance from silent video based on learning of lip movements. It is very challenging due to the inherent ambiguities present in the lip movement such as different characters that produce the same lip appearances. Recent advances in deep learning models such as Transformer and Temporal Convolutional Network have led to improve the performance of lip-reading. However, most previous works deal with English lip-reading which has limitations in directly applying to Korean lip-reading, and moreover, there is no a large scale Korean lip-reading dataset. In this paper, we introduce the first large-scale Korean lip-reading dataset with more than 120 k utterances collected from TV broadcasts containing news, documentary and drama. We also present a preprocessing method which uniformly extracts a facial region of interest and propose a transformer-based model based on grapheme unit for sentence-level Korean lip-reading. We demonstrate that our dataset and model are appropriate for Korean lip-reading through statistics of the dataset and experimental results.
Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods with lip reading experiments. Also, a measure of lip parameter degradation is proposed. This measure can be used in the determination of weighting values of video information.
Lip-reading technology that is studied them is used to compensate speech recognition degradation in noise environment in bi-modal's form. The most important thing is that search for correct lips area in this lip-reading. But, it is hard to forecast stable performance in dynamic environment. Used RASTA filter that show good performance to remove noise in the speech to compensate. This filter shows that improve performance of using time domain of digital filter. To this experiment observes performance of speech recognition only using image information, service chooses possible 22 words and did recognition experiment in car. We used hidden Markov model by speech recognition algorithm to compare this words' recognition performance.
Kim, Kyungnam;Ko, Jong-Gook;SeungHo choi;Kim, Jin-Young;Kim, Ki-Jung
대한전자공학회:학술대회논문집
/
대한전자공학회 2000년도 ITC-CSCC -1
/
pp.249-252
/
2000
An experimental multimodal system combining natural input modes such as speech, lip movement, and gaze is proposed in this paper. It benefits from novel human-compute. interaction (HCI) modalities and from multimodal integration for tackling the problem of the HCI bottleneck. This system allows the user to select menu items on the screen by employing speech recognition, lip reading, and gaze tracking components in parallel. Face tracking is a supplementary component to gaze tracking and lip movement analysis. These key components are reviewed and preliminary results are shown with multimodal integration and user testing on the prototype system. It is noteworthy that the system equipped with gaze tracking and lip reading is very effective in noisy environment, where the speech recognition rate is low, moreover, not stable. Our long term interest is to build a user interface embedded in a commercial car navigation system (CNS).
Lip Reading(독순술(讀脣術)) 이란 입술의 움직임을 보고 상대방이 무슨 말을 하는지 알아내는 기술이다. 본 논문에서는 MBC, SBS 뉴스 클로징 영상에서 쓰이는 문장 10개를 데이터로 사용하고 CNN(Convolutional Neural Network) 아키텍처 중 모바일 기기에서 동작을 목표로 한 MobileNet을 모델로 이용하여 발화자의 입모양을 통해 문장 인식 연구를 진행한 결과를 제시한다. 본 연구는 MobileNet과 LSTM을 활용하여 한국어 입모양을 인식하는데 목적이 있다. 본 연구에서는 뉴스 클로징 영상을 프레임 단위로 잘라 실험 문장 10개를 수집하여 데이터셋(Dataset)을 만들고 발화한 입력 영상으로부터 입술 인식과 검출을 한 후, 전처리 과정을 수행한다. 이후 MobileNet과 LSTM을 이용하여 뉴스 클로징 문장을 발화하는 입모양을 학습 시킨 후 정확도를 알아보는 실험을 진행하였다.
As lipolytic enzymes, GDSL lipases play an important role in plant growth and development. In order to identify their functions and roles, the full-length cDNA of a GDSL lipase gene, designated BnLIP2, was isolated from Brassica napus L. BnLIP2 was 1,300 bp long, with 1,122 bp open reading frame (ORF) encoding 373 amino acid residues. Sequence analysis indicated that BnLIP2 belonged to GDSL family. Southern blot analysis indicated that BnLIP2 belonged to a small gene family in rapeseed genome. RT-PCR analysis revealed that BnLIP2 was a tissue-specific expressing gene during reproductive growth and strongly expressed during seed germination. BnLIP2 expression could not be detected until three days after germination, and it subsequently became stronger. The transcript of this gene was deficient in root of seedlings growing at different stages. When juvenile seedlings were treated by methyl jasmonate (MeJ), salicylic acid (SA) and naphthalene acetic acid (NAA), BnLIP2 expression could not be induced in root. Our study implicates that BnLIP2 probably plays an important role in rapeseed germination, morphogenesis, flowering, but independent of root growth and development.
This paper explores the recent advancements in speech recognition technology, focusing on the integration of artificial intelligence to improve recognition accuracy in challenging environments, such as noisy or low-quality audio conditions. Traditional speech recognition methods often suffer from performance degradation in noisy settings. However, the application of deep neural networks (DNN) has led to significant improvements, enabling more robust and reliable recognition in various industries, including banking, automotive, healthcare, and manufacturing. A key area of advancement is the use of Silent Speech Interfaces (SSI), which allow communication through non-speech signals, such as visual cues or other auxiliary signals like ultrasound and electromyography, making them particularly useful for individuals with speech impairments. The paper further discusses the development of multi-modal speech recognition, combining both audio and visual inputs, which enhances recognition accuracy in noisy environments. Recent research into lip-reading technology and the use of deep learning architectures, such as CNN and RNN, has significantly improved speech recognition by extracting meaningful features from video signals, even in difficult lighting conditions. Additionally, the paper covers the use of self-supervised learning techniques, like AV-HuBERT, which leverage large-scale, unlabeled audiovisual datasets to improve performance. The future of speech recognition technology is likely to see further integration of AI-driven methods, making it more applicable across diverse industries and for individuals with communication challenges. The conclusion emphasizes the need for further research, especially in languages with complex morphological structures, such as Korean
A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at $30^{\circ}C$, and was unstable at temperatures higher than $30^{\circ}C$, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24h incubation at $4^{\circ}C$. The addition of $Ca^{2+}\;and\;Mg^{2+}$ enhanced the enzyme activity of LipA1, whereas the $Cd^{2+},\;Zn^{2+},\;CO^{2+},\;Fe^{3+},\;Hg^{2+},\;Fe^{2+},\;Rb^{2+}$, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate $(C_{14}\;acyl\; groups)$.
The purpose of this study was to extract accurate parameters of facial movement features using 3-D motion capture system in speech recognition technology through lip-reading. Instead of using the features obtained through traditional camera image, the 3-D motion system was used to obtain quantitative data for actual facial movements, and to analyze 11 variables that exhibit particular patterns such as nose, lip, jaw and cheek movements in monosyllable vocalizations. Fourteen subjects, all in 20s of age, were asked to vocalize 11 types of Korean vowel monosyllables for three times with 36 reflective markers on their faces. The obtained facial movement data were then calculated into 11 parameters and presented as patterns for each monosyllable vocalization. The parameter patterns were performed through learning and recognizing process for each monosyllable with speech recognition algorithms with Hidden Markov Model (HMM) and Viterbi algorithm. The accuracy rate of 11 monosyllables recognition was 97.2%, which suggests the possibility of voice recognition of Korean language through quantitative facial movement analysis.
In recent years research on HCI technology has been very active and speech recognition is being used as its typical method. Its recognition, however, is deteriorated with the increase of surrounding noise. To solve this problem, studies concerning the multimodal HCI are being briskly made. This paper describes automated lipreading for bimodal speech recognition on the basis of image- and speech information. It employs audio-visual DB containing 1,074 words from 70 voice and tri-viseme as a recognition unit, and state tied HMM as a recognition model. Performance of automated recognition of 22 to 1,000 words are evaluated to achieve word recognition of 60.5% in terms of 22word recognizer.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.