• Title/Summary/Keyword: Lip Reading

Search Result 36, Processing Time 0.022 seconds

Korean Lip-Reading: Data Construction and Sentence-Level Lip-Reading (한국어 립리딩: 데이터 구축 및 문장수준 립리딩)

  • Sunyoung Cho;Soosung Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.167-176
    • /
    • 2024
  • Lip-reading is the task of inferring the speaker's utterance from silent video based on learning of lip movements. It is very challenging due to the inherent ambiguities present in the lip movement such as different characters that produce the same lip appearances. Recent advances in deep learning models such as Transformer and Temporal Convolutional Network have led to improve the performance of lip-reading. However, most previous works deal with English lip-reading which has limitations in directly applying to Korean lip-reading, and moreover, there is no a large scale Korean lip-reading dataset. In this paper, we introduce the first large-scale Korean lip-reading dataset with more than 120 k utterances collected from TV broadcasts containing news, documentary and drama. We also present a preprocessing method which uniformly extracts a facial region of interest and propose a transformer-based model based on grapheme unit for sentence-level Korean lip-reading. We demonstrate that our dataset and model are appropriate for Korean lip-reading through statistics of the dataset and experimental results.

Robustness of Bimodal Speech Recognition on Degradation of Lip Parameter Estimation Performance (음성인식에서 입술 파라미터 열화에 따른 견인성 연구)

  • Kim, Jin-Young;Min, So-Hee;Choi, Seung-Ho
    • Speech Sciences
    • /
    • v.10 no.2
    • /
    • pp.27-33
    • /
    • 2003
  • Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods through lip reading experiments.

  • PDF

Robustness of Bimodal Speech Recognition on Degradation of Lip Parameter Estimation Performance (음성인식에서 입술 파라미터 열화에 따른 견인성 연구)

  • Kim Jinyoung;Shin Dosung;Choi Seungho
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Bimodal speech recognition based on lip reading has been studied as a representative method of speech recognition under noisy environments. There are three integration methods of speech and lip modalities as like direct identification, separate identification and dominant recording. In this paper we evaluate the robustness of lip reading methods under the assumption that lip parameters are estimated with errors. We show that the dominant recording approach is more robust than other methods with lip reading experiments. Also, a measure of lip parameter degradation is proposed. This measure can be used in the determination of weighting values of video information.

  • PDF

A Study on Analysis of Variant Factors of Recognition Performance for Lip-reading at Dynamic Environment (동적 환경에서의 립리딩 인식성능저하 요인분석에 대한 연구)

  • 신도성;김진영;이주헌
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.471-477
    • /
    • 2002
  • Recently, lip-reading has been studied actively as an auxiliary method of automatic speech recognition(ASR) in noisy environments. However, almost of research results were obtained based on the database constructed in indoor condition. So, we dont know how developed lip-reading algorithms are robust to dynamic variation of image. Currently we have developed a lip-reading system based on image-transform based algorithm. This system recognize 22 words and this word recognizer achieves word recognition of up to 53.54%. In this paper we present how stable the lip-reading system is in environmental variance and what the main variant factors are about dropping off in word-recognition performance. For studying lip-reading robustness we consider spatial valiance (translation, rotation, scaling) and illumination variance. Two kinds of test data are used. One Is the simulated lip image database and the other is real dynamic database captured in car environment. As a result of our experiment, we show that the spatial variance is one of degradations factors of lip reading performance. But the most important factor of degradation is not the spatial variance. The illumination variances make severe reduction of recognition rates as much as 70%. In conclusion, robust lip reading algorithms against illumination variances should be developed for using lip reading as a complementary method of ASR.

Lip Reading Method Using CNN for Utterance Period Detection (발화구간 검출을 위해 학습된 CNN 기반 입 모양 인식 방법)

  • Kim, Yong-Ki;Lim, Jong Gwan;Kim, Mi-Hye
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.233-243
    • /
    • 2016
  • Due to speech recognition problems in noisy environment, Audio Visual Speech Recognition (AVSR) system, which combines speech information and visual information, has been proposed since the mid-1990s,. and lip reading have played significant role in the AVSR System. This study aims to enhance recognition rate of utterance word using only lip shape detection for efficient AVSR system. After preprocessing for lip region detection, Convolution Neural Network (CNN) techniques are applied for utterance period detection and lip shape feature vector extraction, and Hidden Markov Models (HMMs) are then used for the recognition. As a result, the utterance period detection results show 91% of success rates, which are higher performance than general threshold methods. In the lip reading recognition, while user-dependent experiment records 88.5%, user-independent experiment shows 80.2% of recognition rates, which are improved results compared to the previous studies.

Real Time Lip Reading System Implementation in Embedded Environment (임베디드 환경에서의 실시간 립리딩 시스템 구현)

  • Kim, Young-Un;Kang, Sun-Kyung;Jung, Sung-Tae
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.227-232
    • /
    • 2010
  • This paper proposes the real time lip reading method in the embedded environment. The embedded environment has the limited sources to use compared to existing PC environment, so it is hard to drive the lip reading system with existing PC environment in the embedded environment in real time. To solve the problem, this paper suggests detection methods of lip region, feature extraction of lips, and awareness methods of phonetic words suitable to the embedded environment. First, it detects the face region by using face color information to find out the accurate lip region and then detects the exact lip region by finding the position of both eyes from the detected face region and using the geometric relations. To detect strong features of lighting variables by the changing surroundings, histogram matching, lip folding, and RASTA filter were applied, and the properties extracted by using the principal component analysis(PCA) were used for recognition. The result of the test has shown the processing speed between 1.15 and 2.35 sec. according to vocalizations in the embedded environment of CPU 806Mhz, RAM 128MB specifications and obtained 77% of recognition as 139 among 180 words were recognized.

A Study on Lip-reading Enhancement Using Time-domain Filter (시간영역 필터를 이용한 립리딩 성능향상에 관한 연구)

  • 신도성;김진영;최승호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.5
    • /
    • pp.375-382
    • /
    • 2003
  • Lip-reading technique based on bimodal is to enhance speech recognition rate in noisy environment. It is most important to detect the correct lip-image. But it is hard to estimate stable performance in dynamic environment, because of many factors to deteriorate Lip-reading's performance. There are illumination change, speaker's pronunciation habit, versatility of lips shape and rotation or size change of lips etc. In this paper, we propose the IIR filtering in time-domain for the stable performance. It is very proper to remove the noise of speech, to enhance performance of recognition by digital filtering in time domain. While the lip-reading technique in whole lip image makes data massive, the Principal Component Analysis of pre-process allows to reduce the data quantify by detection of feature without loss of image information. For the observation performance of speech recognition using only image information, we made an experiment on recognition after choosing 22 words in available car service. We used Hidden Markov Model by speech recognition algorithm to compare this words' recognition performance. As a result, while the recognition rate of lip-reading using PCA is 64%, Time-domain filter applied to lip-reading enhances recognition rate of 72.4%.

Lip Region Extraction by Gaussian Classifier (가우스 분류기를 이용한 입술영역 추출)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • Lip reading is a field of image processing to assist the process of sound recognition. In some environment, the capture of sound signal usually has significant noise and therefore, the recognition rate of sound signal decreases. Lip reading can be a good feature for the increase of recognition rates. Conventional lip extraction methods have been proposed widely. Maia et. al. proposed a method by the sum of Cr and Cb. However, there are two problems as follows: the point with maximum saturation is not always regarded as lips region and the inner part of lips such as oral cavity and teeth can be classified as lips. To solve these problems, this paper proposes a method which adopts the histogram-based classifier for the extraction of lips region. The proposed method consists of two stages, learning and test. The amount of computation is minimized because this method has no color conversion. The performance of proposed method gives 66.8% of detection rate compared to 28% of conventional ones.

Cloning, Expression, and Purification of a Lipase from Psychrotrophic Pseudomonas mandelii (Pseudomonas mandelii의 lipase 유전자 클로닝, 발현 및 정제)

  • Kim, Jun-Sung;Lee, Chang-Woo
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.306-311
    • /
    • 2012
  • A gene encoding a lipase, lipT, was cloned from the psychrotrophic bacterium Pseudomonas mandelii and sequenced. An open reading frame of 1,686 bp was found that encodes a polypeptide consisting of 562 amino acid residues. Sequence analysis revealed a Gly-His-Ser-Leu-Gly sequence, which matches the consensus Gly-X-Ser-X-Gly motif conserved among lipolytic enzymes. The recombinant LipT protein was predominantly expressed as inclusion bodies in Escherichia coli and subsequently purified by nickel-chelate affinity chromatography. A small fraction of LipT was refolded, and the subsequent LipT exhibited substrate preferences for p-nitrophenyl butyrate (C4) and p-nitrophenyl octanoate (C8).

A Study on Lip-reading enhancement using RATSTA fileter (RASTA 필터를 이용한 립리딩 성능향상에 관한 연구)

  • Shin Dosung;Kim Jinyoung;Choi Seungho;Kim Sanghun
    • Proceedings of the KSPS conference
    • /
    • 2002.11a
    • /
    • pp.191-194
    • /
    • 2002
  • Lip-reading technology that is studied them is used to compensate speech recognition degradation in noise environment in bi-modal's form. The most important thing is that search for correct lips area in this lip-reading. But, it is hard to forecast stable performance in dynamic environment. Used RASTA filter that show good performance to remove noise in the speech to compensate. This filter shows that improve performance of using time domain of digital filter. To this experiment observes performance of speech recognition only using image information, service chooses possible 22 words and did recognition experiment in car. We used hidden Markov model by speech recognition algorithm to compare this words' recognition performance.

  • PDF